Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-07-05
Bae, Jin Hee, Kim, Minwoo, Lim, Joon S..  2021.  Emotion Detection and Analysis from Facial Image using Distance between Coordinates Feature. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :494—497.
Facial expression recognition has long been established as a subject of continuous research in various fields. In this study, feature extraction was conducted by calculating the distance between facial landmarks in an image. The extracted features of the relationship between each landmark and analysis were used to classify five facial expressions. We increased the data and label reliability based on our labeling work with multiple observers. Additionally, faces were recognized from the original data, and landmark coordinates were extracted and used as features. A genetic algorithm was used to select features that were relatively more helpful for classification. We performed facial recognition classification and analysis using the method proposed in this study, which showed the validity and effectiveness of the proposed method.
2022-07-14
Kaur, Amanpreet, Singh, Gurpreet.  2021.  Encryption Algorithms based on Security in IoT (Internet of Things). 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :482–486.
The Internet is evolving everywhere and expanding its entity globally. The IoT(Internet of things) is a new and interesting concept introduced in this world of internet. Generally it is interconnected computing device which can be embedded in our daily routine objects through which we can send and receive data. It is beyond connecting computers and laptops only although it can connect billion of devices. It can be described as reliable method of communication that also make use of other technologies like wireless sensor, QR code etc. IoT (Internet of Things) is making everything smart with use of technology like smart homes, smart cities, smart watches. In this chapter, we will study the security algorithms in IoT (Internet of Things) which can be achieved with encryption process. In the world of IoT, data is more vulnerable to threats. So as to protect data integrity, data confidentiality, we have Light weight Encryption Algorithms like symmetric key cryptography and public key cryptography for secure IoT (Internet of Things) named as Secure IoT. Because it is not convenient to use full encryption algorithms that require large memory size, large program code and larger execution time. Light weight algorithms meet all resource constraints of small memory size, less execution time and efficiency. The algorithms can be measured in terms of key size, no of blocks and algorithm structure, chip size and energy consumption. Light Weight Techniques provides security to smart object networks and also provides efficiency. In Symmetric Key Cryptography, two parties can have identical keys but has some practical difficulty. Public Key Cryptography uses both private and public key which are related to each other. Public key is known to everyone while private key is kept secret. Public Key cryptography method is based on mathematical problems. So, to implement this method, one should have a great expertise.
2022-06-09
Khalimov, Gennady, Sievierinov, Oleksandr, Khalimova, Svitlana, Kotukh, Yevgen, Chang, Sang-Yoon, Balytskyi, Yaroslav.  2021.  Encryption Based on the Group of the Hermitian Function Field and Homomorphic Encryption. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S T). :465–469.
The article proposes a general approach to the implementation of encryption schemes based on the group of automorphisms of the Hermitian functional field. The three-parameter group is used with logarithmic captions outside the center of the group. This time we applied for an encryption scheme based on a Hermitian function field with homomorphic encryption. The use of homomorphic encryption is an advantage of this implementation. The complexity of the attack and the size of the encrypted message depends on the strength of the group.
2022-09-16
Kaur, Satwinder, Kuttan, Deepak B, Mittal, Nitin.  2021.  An Energy-saving Approach for Error control Codes in Wireless Sensor Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :313—316.
Wireless Sensor Networks (WSNs) have limited energy resource which requires authentic data transmission at a minimum cost. The major challenge is to deploy WSN with limited energy and lifetime of nodes while taking care of secure data communication. The transmission of data from the wireless channels may cause many losses such as fading, noise, bit error rate increases as well as deplete the energy resource from the nodes. To reduce the adverse effects of losses and to save power usage, error control coding (ECC) techniques are widely used and it also brings coding gain. Since WSN have limited energy resource so the selection of ECC is very difficult as both power consumption, as well as BER, has also taken into consideration. This research paper reviews different types of models, their applications, limitations of the sensor networks, and what are different types of future works going to overcome the limitations.
2022-05-10
Riurean, Simona, Leba, Monica, Crivoi, Lilia.  2021.  Enhanced Security Level for Sensitive Medical Data Transmitted through Visible Light. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
The recent events regarding worldwide human health sped up research efforts and resulted in the tremendous development of new technologies and applications. The last decade proved that new technologies find a proper place in worldwide human health and wellbeing, therefore the security of data during wireless transmission in medical facilities and for medical devices has become a research area of considerable importance. To provide enhanced security using conventional visible light wireless communication, we propose in this paper a novel communication protocol based on asymmetric encryption with a private key. We base the wireless communication protocol described in this work on a data encryption method using block chipers, and we propose it for medical facilities and devices with visible light transmission technology embedded. The asymmetric encryption with a private key algorithm, as part of a transmission protocol, aim to assure the security of sensitive medical data during wireless communication.
Ahakonye, Love Allen Chijioke, Amaizu, Gabriel Chukwunonso, Nwakanma, Cosmas Ifeanyi, Lee, Jae Min, Kim, Dong-Seong.  2021.  Enhanced Vulnerability Detection in SCADA Systems using Hyper-Parameter-Tuned Ensemble Learning. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :458–461.
The growth of inter-dependency intricacies of Supervisory Control and Data Acquisition (SCADA) systems in industrial operations generates a likelihood of increased vulnerability to malicious threats and machine learning approaches have been extensively utilized in the research for vulnerability detection. Nonetheless, to improve security, an enhanced vulnerability detection using hyper-parameter-tune machine learning is proposed for early detection, classification and mitigation of SCADA communication and transmission networks by classifying benign, or malicious DNS attacks. The proposed scheme, an ensemble optimizer (GentleBoost) upon hyper-parameter tuning, gave a comparative achievement. From the simulation results, the proposed scheme had an outstanding performance within the shortest possible time with an accuracy of 99.49%, 99.23% for precision, and a recall rate of 99.75%. Also, the model was compared to other contemporary algorithms and outperformed all the other algorithms proving to be an approach to keep abreast of the SCADA network vulnerabilities and attacks.
2022-07-13
Zuo, Jinxin, Guo, Ziyu, Gan, Jiefu, Lu, Yueming.  2021.  Enhancing Continuous Service of Information Systems Based on Cyber Resilience. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :535—542.

Cyber resilience has become a strategic point of information security in recent years. In the face of complex attack means and severe internal and external threats, it is difficult to achieve 100% protection against information systems. It is necessary to enhance the continuous service of information systems based on network resiliency and take appropriate compensation measures in case of protection failure, to ensure that the mission can still be achieved under attack. This paper combs the definition, cycle, and state of cyber resilience, and interprets the cyber resiliency engineering framework, to better understand cyber resilience. In addition, we also discuss the evolution of security architecture and analyze the impact of cyber resiliency on security architecture. Finally, the strategies and schemes of enhancing cyber resilience represented by zero trust and endogenous security are discussed.

2022-06-06
Mirza, Mohammad Meraj, Karabiyik, Umit.  2021.  Enhancing IP Address Geocoding, Geolocating and Visualization for Digital Forensics. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–7.
Internet Protocol (IP) address holds a probative value to the identification process in digital forensics. The decimal digit is a unique identifier that is beneficial in many investigations (i.e., network, email, memory). IP addresses can reveal important information regarding the device that the user uses during Internet activity. One of the things that IP addresses can essentially help digital forensics investigators in is the identification of the user machine and tracing evidence based on network artifacts. Unfortunately, it appears that some of the well-known digital forensic tools only provide functions to recover IP addresses from a given forensic image. Thus, there is still a gap in answering if IP addresses found in a smartphone can help reveal the user’s location and be used to aid investigators in identifying IP addresses that complement the user’s physical location. Furthermore, the lack of utilizing IP mapping and visualizing techniques has resulted in the omission of such digital evidence. This research aims to emphasize the importance of geolocation data in digital forensic investigations, propose an IP visualization technique considering several sources of evidence, and enhance the investigation process’s speed when its pertained to IP addresses using spatial analysis. Moreover, this research proposes a proof-of-concept (POC) standalone tool that can match critical IP addresses with approximate geolocations to fill the gap in this area.
2022-10-16
MaungMaung, AprilPyone, Kiya, Hitoshi.  2021.  Ensemble of Key-Based Models: Defense Against Black-Box Adversarial Attacks. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :95–98.
We propose a voting ensemble of models trained by using block-wise transformed images with secret keys against black-box attacks. Although key-based adversarial defenses were effective against gradient-based (white-box) attacks, they cannot defend against gradient-free (black-box) attacks without requiring any secret keys. In the proposed ensemble, a number of models are trained by using images transformed with different keys and block sizes, and then a voting ensemble is applied to the models. Experimental results show that the proposed defense achieves a clean accuracy of 95.56 % and an attack success rate of less than 9 % under attacks with a noise distance of 8/255 on the CIFAR-10 dataset.
2022-04-19
Shehab, Manal, Korany, Noha, Sadek, Nayera.  2021.  Evaluation of the IP Identification Covert Channel Anomalies Using Support Vector Machine. 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
IP Identification (IP ID) is an IP header field that identifies a data packet in the network to distinguish its fragments from others during the reassembly process. Random generated IP ID field could be used as a covert channel by embedding hidden bits within it. This paper uses the support vector machine (SVM) while enabling a features reduction procedure for investigating to what extend could the entropy feature of the IP ID covert channel affect the detection. Then, an entropy-based SVM is employed to evaluate the roles of the IP ID covert channel hidden bits on detection. Results show that, entropy is a distinct discrimination feature in classifying and detecting the IP ID covert channel with high accuracy. Additionally, it is found that each of the type, the number and the position of the hidden bits within the IP ID field has a specified influence on the IP ID covert channel detection accuracy.
2022-05-10
Li, Ziyang, Washizaki, Hironori, Fukazawa, Yoshiaki.  2021.  Feature Extraction Method for Cross-Architecture Binary Vulnerability Detection. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :834–836.
Vulnerability detection identifies defects in various commercial software. Because most vulnerability detection methods are based on the source code, they are not useful if the source code is unavailable. In this paper, we propose a binary vulnerability detection method and use our tool named BVD that extracts binary features with the help of an intermediate language and then detects the vulnerabilities using an embedding model. Sufficiently robust features allow the binaries compiled in cross-architecture to be compared. Consequently, a similarity evaluation provides more accurate results.
2022-10-06
Zhang, Jiachao, Yu, Peiran, Qi, Le, Liu, Song, Zhang, Haiyu, Zhang, Jianzhong.  2021.  FLDDoS: DDoS Attack Detection Model based on Federated Learning. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :635–642.
Recently, DDoS attack has developed rapidly and become one of the most important threats to the Internet. Traditional machine learning and deep learning methods can-not train a satisfactory model based on the data of a single client. Moreover, in the real scenes, there are a large number of devices used for traffic collection, these devices often do not want to share data between each other depending on the research and analysis value of the attack traffic, which limits the accuracy of the model. Therefore, to solve these problems, we design a DDoS attack detection model based on federated learning named FLDDoS, so that the local model can learn the data of each client without sharing the data. In addition, considering that the distribution of attack detection datasets is extremely imbalanced and the proportion of attack samples is very small, we propose a hierarchical aggregation algorithm based on K-Means and a data resampling method based on SMOTEENN. The result shows that our model improves the accuracy by 4% compared with the traditional method, and reduces the number of communication rounds by 40%.
2022-06-30
Pradeep, Diya Achu, Harsha, A, Jacob, Jaison.  2021.  Image Encryption Using Chaotic Map And Related Analysis. 2021 International Conference on Advances in Computing and Communications (ICACC). :1—5.
The superior breadth of data transmission through the internet is rapidly increasing in the current scenario. The information in the form of images is really critical in the fields of Banking, Military, Medicine, etc, especially, in the medical field as people are unable to travel to different locations, they rely on telemedicine facilities available. All these fields are equally vulnerable to intruders. So, to prevent such an act, encryption of these data in the form of images can be done using chaos encryption. Chaos Encryption has its long way in the field of Secure Communication. Their Unique features offer much more security than any conventional algorithms. There are many simple chaotic maps that could be used for encryption. In this paper, at first Henon chaotic maps is used for the encryption purpose. The comparison of the algorithm with conventional algorithms is also done. Finally, a security analysis for proving the robustness of the algorithm is carried out. Also, different existing and some new versions are compared so as to check whether a new combination could produce a better result. The simulation results show that the proposed algorithm is robust and simple to be used for this application. Also, found a new combination of the map to be used for the application.
2022-09-20
Sreemol, R, Santosh Kumar, M B, Sreekumar, A.  2021.  Improvement of Security in Multi-Biometric Cryptosystem by Modulus Fuzzy Vault Algorithm. 2021 International Conference on Advances in Computing and Communications (ICACC). :1—7.
Numerous prevalent techniques build a Multi-Modal Biometric (MMB) system that struggles in offering security and also revocability onto the templates. This work proffered a MMB system centred on the Modulus Fuzzy Vault (MFV) aimed at resolving these issues. The methodology proposed includes Fingerprint (FP), Palmprint (PP), Ear and also Retina images. Utilizing the Boosted Double Plateau Histogram Equalization (BDPHE) technique, all images are improved. Aimed at removing the unnecessary things as of the ear and the blood vessels are segmented as of the retina images utilizing the Modified Balanced Iterative Reducing and Clustering using Hierarchy (MBIRCH) technique. Next, the input traits features are extracted; then the essential features are chosen as of the features extracted utilizing the Bidirectional Deer Hunting optimization Algorithm (BDHOA). The features chosen are merged utilizing the Normalized Feature Level and Score Level (NFLSL) fusion. The features fused are saved securely utilizing Modulus Fuzzy Vault. Upto fusion, the procedure is repeated aimed at the query image template. Next, the de-Fuzzy Vault procedure is executed aimed at the query template, and then the key is detached by matching the query template’s and input biometric template features. The key separated is analogized with the threshold that categorizes the user as genuine or else imposter. The proposed BDPHE and also MFV techniques function efficiently than the existent techniques.
2022-01-11
Foster, Rita, Priest, Zach, Cutshaw, Michael.  2021.  Infrastructure eXpression for Codified Cyber Attack Surfaces and Automated Applicability. 2021 Resilience Week (RWS). :1–4.
The internal laboratory directed research and development (LDRD) project Infrastructure eXpression (IX) at the Idaho National Laboratory (INL), is based on codifying infrastructure to support automatic applicability to emerging cyber issues, enabling automated cyber responses, codifying attack surfaces, and analysis of cyber impacts to our nation's most critical infrastructure. IX uses the Structured Threat Information eXpression (STIX) open international standard version 2.1 which supports STIX Cyber Observable (SCO) to codify infrastructure characteristics and exposures. Using these codified infrastructures, STIX Relationship Objects (SRO) connect to STIX Domain Objects (SDO) used for modeling cyber threat used to create attack surfaces integrated with specific infrastructure. This IX model creates a shareable, actionable and implementable attack surface that is updateable with emerging threat or infrastructure modifications. Enrichment of cyber threat information includes attack patterns, indicators, courses of action, malware and threat actors. Codifying infrastructure in IX enables creation of software and hardware bill of materials (SBoM/HBoM) information, analysis of emerging cyber vulnerabilities including supply chain threat to infrastructure.
2022-11-18
Alfassa, Shaik Mirra, Nagasundari, S, Honnavalli, Prasad B.  2021.  Invasion Analysis of Smart Meter In AMI System. 2021 IEEE Mysore Sub Section International Conference (MysuruCon). :831—836.
Conventional systems has to be updated as the technology advances at quick pace. A smart grid is a renovated and digitalized version of a standard electrical infrastructure that allows two-way communication between customers and the utility, which overcomes huge manual hustle. Advanced Metering Infrastructure plays a major role in a smart grid by automatically reporting the power consumption readings to the utility through communication networks. However, there is always a trade-off. Security of AMI communication is a major problem that must be constantly monitored if this technology is to be fully utilized. This paper mainly focuses on developing a virtual setup of fully functional smart meter and a web application for generating electricity bill which allows consumer to obtain demand response, where the data is managed at server side. It also focuses on analyzing the potential security concerns posed by MITM-Arp-spoofing attacks on AMI systems and session hijacking attacks on web interfaces. This work also focusses on mitigating the vulnerabilities of session hijacking on web interface by restricting the cookies so that the attacker is unable to acquire any confidential data.
2022-08-12
Sen, Ömer, Van Der Veldc, Dennis, Linnartz, Philipp, Hacker, Immanuel, Henze, Martin, Andres, Michael, Ulbig, Andreas.  2021.  Investigating Man-in-the-Middle-based False Data Injection in a Smart Grid Laboratory Environment. 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). :01—06.
With the increasing use of information and communication technology in electrical power grids, the security of energy supply is increasingly threatened by cyber-attacks. Traditional cyber-security measures, such as firewalls or intrusion detection/prevention systems, can be used as mitigation and prevention measures, but their effective use requires a deep understanding of the potential threat landscape and complex attack processes in energy information systems. Given the complexity and lack of detailed knowledge of coordinated, timed attacks in smart grid applications, we need information and insight into realistic attack scenarios in an appropriate and practical setting. In this paper, we present a man-in-the-middle-based attack scenario that intercepts process communication between control systems and field devices, employs false data injection techniques, and performs data corruption such as sending false commands to field devices. We demonstrate the applicability of the presented attack scenario in a physical smart grid laboratory environment and analyze the generated data under normal and attack conditions to extract domain-specific knowledge for detection mechanisms.
2022-07-29
Sever, Pop Septimiu, Vlad, Bande.  2021.  LC Oscillator Design Used in Sensor Measurement Based on Embedded Technology. 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME). :125–128.
This paper emphasizes the implementation of a conditioning circuit specific for an inductive or capacitive sensor. There are some inductive sensors, such as the proximity sensor, for which the inductance is dependent with the distance, or capacitive sensors strongly dependent with the humidity, distance, etc. This category of sensors is suitable for AC domain excitation from the measurement procedure point of view. Taking into consideration the fabrication technology, the measured physical quantity is being encoded as frequency or amplitude. To generate a sinusoidal signal with constant frequency and amplitude, the Colpitts or Hartley oscillators can be used [1], [2]. But the novelty of this paper is a different approach which reveals a microcontroller-based technology where the LC circuit works in an oscillating regime even though there is an underdamped oscillation behavior. For the oscillations’ occurrence, there will be a periodical energy injection using a driving source. One of the main advantages of the mentioned circuit is the small component number. The central unit of the embedded system will fulfil two functions: maintains the oscillating regime and measures the amplitude or frequency of the output signal. In this way, the built embedded system will be robust and easy to use due to its software configuration capabilities. As a plus, such a system can measure additional sensors used in environment parameters’ compensating procedure.
2022-09-30
Höglund, Joel, Raza, Shahid.  2021.  LICE: Lightweight certificate enrollment for IoT using application layer security. 2021 IEEE Conference on Communications and Network Security (CNS). :19–28.
To bring Internet-grade security to billions of IoT devices and make them first-class Internet citizens, IoT devices must move away from pre-shared keys to digital certificates. Public Key Infrastructure, PKI, the digital certificate management solution on the Internet, is inevitable to bring certificate-based security to IoT. Recent research efforts has shown the feasibility of PKI for IoT using Internet security protocols. New and proposed standards enable IoT devices to implement more lightweight solutions for application layer security, offering real end-to-end security also in the presence of proxies.In this paper we present LICE, an application layer enrollment protocol for IoT, an important missing piece before certificate-based security can be used with new IoT standards such as OSCORE and EDHOC. Using LICE, enrollment operations can complete by consuming less than 800 bytes of data, less than a third of the corresponding operations using state-of-art EST-coaps over DTLS. To show the feasibility of our solution, we implement and evaluate the protocol on real IoT hardware in a lossy low-power radio network environment.
2022-05-10
Lu, Shouqin, Li, Xiangxue.  2021.  Lightweight Grouping-Proof for Post-Quantum RFID Security. 2021 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). :49–58.
A grouping-proof protocol aims to generate an evidence that two or more RFID (Radio Frequency Identification) tags in a group are coexistent, which has been widely deployed in practical scenarios, such as healthcare, supply-chain management, and so on. However, existing grouping-proof protocols have many issues in security and efficiency, either incompatible with EPCglobal Class-1 Generation-2 (C1G2) standard, or vulnerable to different attacks. In this paper, we propose a lightweight grouping-proof protocol which only utilizes bitwise operations (AND, XOR) and 128-bit pseudorandom number generator (PRNG). 2-round interactions between the reader and the tags allow them to cooperate on fast authentication in parallel mode where the reader broadcasts its round messages rather than hang on for the prior tag and then fabricate apposite output for the next tag consecutively. Our design enables the reader to aggregate the first round proofs (to bind the membership of tags in the same group) generated by the tags to an authenticator of constant size (independent of the number of tags) that can then be used by the tags to generate the second round proofs (and that will be validated by the verifier). Formal security (i.e., PPT adversary cannot counterfeit valid grouping-proof that can be accepted by any verifier) of the proposed protocol relies on the hardness of the learning parity with noise (LPN) problem, which can resist against quantum computing attacks. Other appealing features (e.g., robustness, anonymity, etc.) are also inspected. Performance evaluation shows its applicability to C1G2 RFID.
2022-05-20
Chattopadhyay, Abhiroop, Valdes, Alfonso, Sauer, Peter W., Nuqui, Reynaldo.  2021.  A Localized Cyber Threat Mitigation Approach For Wide Area Control of FACTS. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :264–269.
We propose a localized oscillation amplitude monitoring (OAM) method for the mitigation of cyber threats directed at the wide area control (WAC) system used to coordinate control of Flexible AC Transmission Systems (FACTS) for power oscillation damping (POD) of active power flow on inter-area tie lines. The method involves monitoring the inter-area tie line active power oscillation amplitude over a sliding window. We use system instability - inferred from oscillation amplitudes growing instead of damping - as evidence of an indication of a malfunction in the WAC of FACTS, possibly indicative of a cyber attack. Monitoring the presence of such a growth allows us to determine whether any destabilizing behaviors appear after the WAC system engages to control the POD. If the WAC signal increases the oscillation amplitude over time, thereby diminishing the POD performance, the FACTS falls back to POD using local measurements. The proposed method does not require an expansive system-wide view of the network. We simulate replay, control integrity, and timing attacks for a test system and present results that demonstrate the performance of the OAM method for mitigation.
2022-11-18
Kar, Jishnudeep, Chakrabortty, Aranya.  2021.  LSTM based Denial-of-Service Resiliency for Wide-Area Control of Power Systems. 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). :1–5.
Denial-of-Service (DoS) attacks in wide-area control loops of electric power systems can cause temporary halting of information flow between the generators, leading to closed-loop instability. One way to counteract this issue would be to recreate the missing state information at the impacted generators by using the model of the entire system. However, that not only violates privacy but is also impractical from a scalability point of view. In this paper, we propose to resolve this issue by using a model-free technique employing neural networks. Specifically, a long short-term memory network (LSTM) is used. Once an attack is detected and localized, the LSTM at the impacted generator(s) predicts the magnitudes of the corresponding missing states in a completely decentralized fashion using offline training and online data updates. These predicted states are thereafter used in conjunction with the healthy states to sustain the wide-area feedback until the attack is cleared. The approach is validated using the IEEE 68-bus, 16-machine power system.
2022-04-25
Son, Seok Bin, Park, Seong Hee, Lee, Youn Kyu.  2021.  A Measurement Study on Gray Channel-based Deepfake Detection. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :428–430.
Deepfake detection techniques have been widely studied to resolve security issues. However, existing techniques mainly focused on RGB channel-based analysis, which still shows incomplete detection accuracy. In this paper, we validate the performance of Gray channel-based deepfake detection. To compare RGB channel-based analysis and Gray channel-based analysis in deepfake detection, we quantitatively measured the performance by using popular CNN models, deepfake datasets, and evaluation indicators. Our experimental results confirm that Gray channel-based deepfake detection outperforms RGB channel-based deepfake detection in terms of accuracy and analysis time.
2022-07-14
Nariezhnii, Oleksii, Grinenko, Tetiana.  2021.  Method for Increasing the Accuracy of the Synchronization of Generation Random Sequences Using Control and Correction Stations. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). :309—314.
This article describes the process of synchronizing the generation of random sequences by a quantum random number generator (QRNG) that can be used as secret keys for known cryptographic transformations. The subject of the research is a method for synchronizing the generation of random QRNG sequences based on L1 (C/A) signals of the global positioning system (GPS) using control correcting information received from control correcting stations.
2022-06-14
Gvozdov, Roman, Poddubnyi, Vadym, Sieverinov, Oleksandr, Buhantsov, Andrey, Vlasov, Andrii, Sukhoteplyi, Vladyslav.  2021.  Method of Biometric Authentication with Digital Watermarks. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). :569–571.
This paper considers methods of fingerprint protection in biometric authentication systems. Including methods of protecting fingerprint templates using zero digital watermarks and cryptography techniques. The paper considers a secure authentication model using cryptography and digital watermarks.