Biblio
To enhance the encryption and anti-translation capability of the information, we constructed a five-dimensional chaotic system. Combined with the Lü system, a time-switched system with multiple chaotic attractors is realized in the form of a digital circuit. Some characteristics of the five-dimensional system are analyzed, such as Poincare mapping, the Lyapunov exponent spectrum, and bifurcation diagram. The analysis shows that the system exhibits chaotic characteristics for a wide range of parameter values. We constructed a time-switched expression between multiple chaotic attractors using the communication between a microcontroller unit (MCU) and field programmable gate array (FPGA). The system can quickly switch between different chaotic attractors within the chaotic system and between chaotic systems at any time, leading to signal sources with more variability, diversity, and complexity for chaotic encryption.
A cross-layer secure communication scheme for multiple input multiple output (MIMO) system based on spatial modulation (SM) is proposed in this paper. The proposed scheme combined the upper layer stream cipher with the distorted signal design of the MIMO spatial modulation system in the physical layer to realize the security information transmission, which is called cross-layer secure communication system. Simulation results indicate that the novel scheme not only further ensure the legitimate user an ideal reception demodulation performance as the original system, but also make the eavesdropper' error rate stable at 0.5. The novel system do not suffer from a significant increasing complexity.
Multivariate public key cryptosystem acts as a signature system rather than encryption system due to the minus mode used in system. A multivariate encryption system with determinate equations in central map and chaotic shell protection for central map and affine map is proposed in this paper. The outputs of two-dimension chaotic system are discretized on a finite field to disturb the central map and affine map in multivariate cryptosystem. The determined equations meet the shortage of indeterminate equations in minus mode and make the general attack methods are out of tenable condition. The analysis shows the proposed multivariate symmetric encryption system based on chaotic shell is able to resist general attacks.
Online Social Networks (OSNs) are continuously suffering from the negative impact of Cross-Site Scripting (XSS) vulnerabilities. This paper describes a novel framework for mitigating XSS attack on OSN-based platforms. It is completely based on the request authentication and view isolation approach. It detects XSS attack through validating string value extracted from the vulnerable checkpoint present in the web page by implementing string examination algorithm with the help of XSS attack vector repository. Any similarity (i.e. string is not validated) indicates the presence of malicious code injected by the attacker and finally it removes the script code to mitigate XSS attack. To assess the defending ability of our designed model, we have tested it on OSN-based web application i.e. Humhub. The experimental results revealed that our model discovers the XSS attack vectors with low false negatives and false positive rate tolerable performance overhead.
Active defense is a popular defense technique based on systems that hinder an attacker's progress by design, rather than reactively responding to an attack only after its detection. Well-known active defense systems are honeypots. Honeypots are fake systems, designed to look like real production systems, aimed at trapping an attacker, and analyzing his attack strategy and goals. These types of systems suffer from a major weakness: it is extremely hard to design them in such a way that an attacker cannot distinguish them from a real production system. In this paper, we advocate that, instead of adding additional fake systems in the corporate network, the production systems themselves should be instrumented to provide active defense capabilities. This perspective to active defense allows containing costs and complexity, while at the same time provides the attacker with a more realistic-looking target, and gives the Incident Response Team more time to identify the attacker. The proposed proof-of-concept prototype system can be used to implement active defense in any corporate production network, with little upfront work, and little maintenance.
In this work, we give a lattice attack on the ECDSA implementation in the latest version of OpenSSL, which implement the scalar multiplication by windowed Non-Adjacent Form method. We propose a totally different but more efficient method of extracting and utilizing information from the side-channel results, remarkably improving the previous attacks. First, we develop a new efficient method, which can extract almost all information from the side-channel results, obtaining 105.8 bits of information per signature on average for 256-bit ECDSA. Then in order to make the utmost of our extracted information, we translate the problem of recovering secret key to the Extended Hidden Number Problem, which can be solved by lattice reduction algorithms. Finally, we introduce the methods of elimination, merging, most significant digit recovering and enumeration to improve the attack. Our attack is mounted to the \series secp256k1\ curve, and the result shows that only 4 signatures would be enough to recover the secret key if the Flush+Reload attack is implemented perfectly without any error,which is much better than the best known result needing at least 13 signatures.
Recognition of facial expressions authenticity is quite troublesome for humans. Therefore, it is an interesting topic for the computer vision community, as the developed algorithms for facial expressions authenticity estimation may be used as indicators of deception. This paper discusses the state-of-the art methods developed for smile veracity estimation and proposes a plan of development and validation of a novel approach to automated discrimination between genuine and posed facial expressions. The proposed fully automated technique is based on the extension of the high-dimensional Local Binary Patterns (LBP) to the spatio-temporal domain and combines them with the dynamics of facial landmarks movements. The proposed technique will be validated on several existing smile databases and a novel database created with the use of a high speed camera. Finally, the developed framework will be applied for the detection of deception in real life scenarios.
Traffic of Industrial Control System (ICS) between the Human Machine Interface (HMI) and the Programmable Logic Controller (PLC) is highly periodic. However, it is sometimes multiplexed, due to multi-threaded scheduling. In previous work we introduced a Statechart model which includes multiple Deterministic Finite Automata (DFA), one per cyclic pattern. We demonstrated that Statechart-based anomaly detection is highly effective on multiplexed cyclic traffic when the individual cyclic patterns are known. The challenge is to construct the Statechart, by unsupervised learning, from a captured trace of the multiplexed traffic, especially when the same symbols (ICS messages) can appear in multiple cycles, or multiple times in a cycle. Previously we suggested a combinatorial approach for the Statechart construction, based on Euler cycles in the Discrete Time Markov Chain (DTMC) graph of the trace. This combinatorial approach worked well in simple scenarios, but produced a false-alarm rate that was excessive on more complex multiplexed traffic. In this paper we suggest a new Statechart construction method, based on spectral analysis. We use the Fourier transform to identify the dominant periods in the trace. Our algorithm then associates a set of symbols with each dominant period, identifies the order of the symbols within each period, and creates the cyclic DFAs and the Statechart. We evaluated our solution on long traces from two production ICS: one using the Siemens S7-0x72 protocol and the other using Modbus. We also stress-tested our algorithms on a collection of synthetically-generated traces that simulate multiplexed ICS traces with varying levels of symbol uniqueness and time overlap. The resulting Statecharts model the traces with an overall median false-alarm rate as low as 0.16% on the synthetic datasets, and with zero false-alarms on production S7-0x72 traffic. Moreover, the spectral analysis Statecharts consistently out-performed the previous combinatorial Statecharts, exhibiting significantly lower false alarm rates and more compact model sizes.
Abstractions make building complex systems possible. Many facilities provided by a modern programming language are directly designed to build a certain style of abstraction. Abstractions also aim to enhance code reusability, thus enhancing programmer productivity and effectiveness. Real-world software systems can grow to have a complicated hierarchy of abstractions. Often, the hierarchy grows unnecessarily deep, because the programmers have envisioned the most generic use cases for a piece of code to make it reusable. Sometimes, the abstractions used in the program are not the appropriate ones, and it would be simpler for the higher level client to circumvent such abstractions. Another problem is the impedance mismatch between different pieces of code or libraries coming from different projects that are not designed to work together. Interoperability between such libraries are often hindered by abstractions, by design, in the name of hiding implementation details and encapsulation. These problems necessitate forms of abstraction that are easy to manipulate if needed. In this paper, we describe a powerful mechanism to create white-box abstractions, that encourage flatter hierarchies of abstraction and ease of manipulation and customization when necessary: program refinement. In so doing, we rely on the basic principle that writing directly in the host programming language is as least restrictive as one can get in terms of expressiveness, and allow the programmer to reuse and customize existing code snippets to address their specific needs.
We tackle the problem of automated exploit generation for web applications. In this regard, we present an approach that significantly improves the state-of-art in web injection vulnerability identification and exploit generation. Our approach for exploit generation tackles various challenges associated with typical web application characteristics: their multi-module nature, interposed user input, and multi-tier architectures using a database backend. Our approach develops precise models of application workflows, database schemas, and native functions to achieve high quality exploit generation. We implemented our approach in a tool called Chainsaw. Chainsaw was used to analyze 9 open source applications and generated over 199 first- and second-order injection exploits combined, significantly outperforming several related approaches.
Defending computer networks from ongoing security incidents is a key requirement to ensure service continuity. Handling incidents in real-time is a complex process consisting of the three single steps: intrusion detection, alert processing and intrusion response. For useful and automated incident handling a comprehensive view on the process and tightly interleaved single steps are required. Existing solutions for incident handling merely focus on a single step leaving the other steps completely aside. Incompatible and encapsulated partial solutions are the consequence. This paper proposes an incident handling systems (IHS) based on a novel execution model that allows interleaving and collaborative interaction between the incident handling steps realized using the Blackboard Pattern. Our holistic information model lays the foundation for a conflict-free collaboration. The incident handling steps are further segmented into exchangeable functional blocks distributed across the network. To show the applicability of our approach, typical use cases for incident handling systems are identified and tested with our implementation.
Content Security Policy (CSP) is an emerging W3C standard introduced to mitigate the impact of content injection vulnerabilities on websites. We perform a systematic, large-scale analysis of four key aspects that impact on the effectiveness of CSP: browser support, website adoption, correct configuration and constant maintenance. While browser support is largely satisfactory, with the exception of few notable issues, our analysis unveils several shortcomings relative to the other three aspects. CSP appears to have a rather limited deployment as yet and, more crucially, existing policies exhibit a number of weaknesses and misconfiguration errors. Moreover, content security policies are not regularly updated to ban insecure practices and remove unintended security violations. We argue that many of these problems can be fixed by better exploiting the monitoring facilities of CSP, while other issues deserve additional research, being more rooted into the CSP design.
Malware detection has been widely studied by analysing either file dropping relationships or characteristics of the file distribution network. This paper, for the first time, studies a global heterogeneous malware delivery graph fusing file dropping relationship and the topology of the file distribution network. The integration offers a unique ability of structuring the end-to-end distribution relationship. However, it brings large heterogeneous graphs to analysis. In our study, an average daily generated graph has more than 4 million edges and 2.7 million nodes that differ in type, such as IPs, URLs, and files. We propose a novel Bayesian label propagation model to unify the multi-source information, including content-agnostic features of different node types and topological information of the heterogeneous network. Our approach does not need to examine the source codes nor inspect the dynamic behaviours of a binary. Instead, it estimates the maliciousness of a given file through a semi-supervised label propagation procedure, which has a linear time complexity w.r.t. the number of nodes and edges. The evaluation on 567 million real-world download events validates that our proposed approach efficiently detects malware with a high accuracy.
Recent technology shifts such as cloud computing, the Internet of Things, and big data lead to a significant transfer of sensitive data out of trusted edge networks. To counter resulting privacy concerns, we must ensure that this sensitive data is not inadvertently forwarded to third-parties, used for unintended purposes, or handled and stored in violation of legal requirements. Related work proposes to solve this challenge by annotating data with privacy policies before data leaves the control sphere of its owner. However, we find that existing privacy policy languages are either not flexible enough or require excessive processing, storage, or bandwidth resources which prevents their widespread deployment. To fill this gap, we propose CPPL, a Compact Privacy Policy Language which compresses privacy policies by taking advantage of flexibly specifiable domain knowledge. Our evaluation shows that CPPL reduces policy sizes by two orders of magnitude compared to related work and can check several thousand of policies per second. This allows for individual per-data item policies in the context of cloud computing, the Internet of Things, and big data.
Visible Light Communication (VLC) emerges as a new wireless communication technology with appealing benefits not present in radio communication. However, current VLC designs commonly require LED lights to emit shining light beams, which greatly limits the applicable scenarios of VLC (e.g., in a sunny day when indoor lighting is not needed). It also entails high energy overhead and unpleasant visual experiences for mobile devices to transmit data using VLC. We design and develop DarkLight, a new VLC primitive that allows light-based communication to be sustained even when LEDs emit extremely-low luminance. The key idea is to encode data into ultra-short, imperceptible light pulses. We tackle challenges in circuit designs, data encoding/decoding schemes, and DarkLight networking, to efficiently generate and reliably detect ultra-short light pulses using off-the-shelf, low-cost LEDs and photodiodes. Our DarkLight prototype supports 1.3-m distance with 1.6-Kbps data rate. By loosening up VLC's reliance on visible light beams, DarkLight presents an unconventional direction of VLC design and fundamentally broadens VLC's application scenarios.
Moving target defense (MTD) is an emerging paradigm in which system defenses dynamically mutate in order to decrease the overall system attack surface. Though the concept is promising, implementations have not been widely adopted. The field has been actively researched for over ten years, and has only produced a small amount of extensively adopted defenses, most notably, address space layout randomization (ASLR). This is despite the fact that there currently exist a variety of moving target implementations and proofs-of-concept. We suspect that this results from the moving target controls breaking critical system dependencies from the perspectives of users and administrators, as well as making things more difficult for attackers. As a result, the impact of the controls on overall system security is not sufficient to overcome the inconvenience imposed on legitimate system users. In this paper, we analyze a successful MTD approach. We study the control's dependency graphs, showing how we use graph theoretic and network properties to predict the effectiveness of the selected control.
Differential privacy is a precise mathematical constraint meant to ensure privacy of individual pieces of information in a database even while queries are being answered about the aggregate. Intuitively, one must come to terms with what differential privacy does and does not guarantee. For example, the definition prevents a strong adversary who knows all but one entry in the database from further inferring about the last one. This strong adversary assumption can be overlooked, resulting in misinterpretation of the privacy guarantee of differential privacy. Herein we give an equivalent definition of privacy using mutual information that makes plain some of the subtleties of differential privacy. The mutual-information differential privacy is in fact sandwiched between ε-differential privacy and (ε,δ)-differential privacy in terms of its strength. In contrast to previous works using unconditional mutual information, differential privacy is fundamentally related to conditional mutual information, accompanied by a maximization over the database distribution. The conceptual advantage of using mutual information, aside from yielding a simpler and more intuitive definition of differential privacy, is that its properties are well understood. Several properties of differential privacy are easily verified for the mutual information alternative, such as composition theorems.
Browser fingerprinting is a widely used technique to uniquely identify web users and to track their online behavior. Until now, different tools have been proposed to protect the user against browser fingerprinting. However, these tools have usability restrictions as they deactivate browser features and plug-ins (like Flash) or the HTML5 canvas element. In addition, all of them only provide limited protection, as they randomize browser settings with unrealistic parameters or have methodical flaws, making them detectable for trackers. In this work we demonstrate the first anti-fingerprinting strategy, which protects against Flash fingerprinting without deactivating it, provides robust and undetectable anti-canvas fingerprinting, and uses a large set of real word data to hide the actual system and browser properties without losing usability. We discuss the methods and weaknesses of existing anti-fingerprinting tools in detail and compare them to our enhanced strategies. Our evaluation against real world fingerprinting tools shows a successful fingerprinting protection in over 99% of 70.000 browser sessions.
The software-as-a-service (SaaS) market is growing very fast, but still many clients are concerned about the confidentiality of their data in the cloud. Motivated hackers or malicious insiders could try to steal the clients' data. Encryption is a potential solution, but supporting the necessary functionality also in existing applications is difficult. In this paper, we examine encrypting analytical web applications that perform extensive number processing operations in the database. Existing solutions for encrypting data in web applications poorly support such encryption. We employ a proxy that adjusts the encryption to the level necessary for the client's usage and also supports additively homomorphic encryption. This proxy is deployed at the client and all encryption keys are stored and managed there, while the application is running in the cloud. Our proxy is stateless and we only need to modify the database driver of the application. We evaluate an instantiation of our architecture on an exemplary application. We only slightly increase page load time on average from 3.1 seconds to 4.7. However, roughly 40% of all data columns remain probabilistic encrypted. The client can set the desired security level for each column using our policy mechanism. Hence our proxy architecture offers a solution to increase the confidentiality of the data at the cloud provider at a moderate performance penalty.
In this research paper, we present a function-based methodology to evaluate the resilience of gas pipeline systems under two different cyber-physical attack scenarios. The first attack scenario is the pressure integrity attack on the natural gas high-pressure transmission pipeline. Through simulations, we have analyzed the cyber attacks that propagate from cyber to the gas pipeline physical domain, the time before which the SCADA system should respond to such attacks, and finally, an attack which prevents the response of the system. We have used the combined results of simulations of a wireless mesh network for remote terminal units and of a gas pipeline simulation to measure the shortest Time to Criticality (TTC) parameter; the time for an event to reach the failure state. The second attack scenario describes how a failure of a cyber node controlling power grid functionality propagates from cyber to power to gas pipeline systems. We formulate this problem using a graph-theoretic approach and quantify the resilience of the networks by percentage of connected nodes and the length of the shortest path between them. The results show that parameters such as TTC, power distribution capacity of the power grid nodes and percentage of the type of cyber nodes compromised, regulate the efficiency and resilience of the power and gas networks. The analysis of such attack scenarios helps the gas pipeline system administrators design attack remediation algorithms and improve the response of the system to an attack.
The Internet of Things (IoT) is a design implementation of embedded system design that connects a variety of devices, sensors, and physical objects to a larger connected network (e.g. the Internet) which requires human-to-human or human-to-computer interaction. While the IoT is expected to expand the user's connectivity and everyday convenience, there are serious security considerations that come into account when using the IoT for distributed authentication. Furthermore the incorporation of biometrics to IoT design brings about concerns of cost and implementing a 'user-friendly' design. In this paper, we focus on the use of electrocardiogram (ECG) signals to implement distributed biometrics authentication within an IoT system model. Our observations show that ECG biometrics are highly reliable, more secure, and easier to implement than other biometrics.
In this paper we describe a system that allows the real time creation of firewall rules in response to geographic and political changes in the control-plane. This allows an organization to mitigate data exfiltration threats by analyzing Border Gateway Protocol (BGP) updates and blocking packets from being routed through problematic jurisdictions. By inspecting the autonomous system paths and referencing external data sources about the autonomous systems, a BGP participant can infer the countries that traffic to a particular destination address will traverse. Based on this information, an organization can then define constraints on its egress traffic to prevent sensitive data from being sent via an untrusted region. In light of the many route leaks and BGP hijacks that occur today, this offers a new option to organizations willing to accept reduced availability over the risk to confidentiality. Similar to firewalls that allow organizations to block traffic originating from specific countries, our approach allows blocking outbound traffic from transiting specific jurisdictions. To illustrate the efficacy of this approach, we provide an analysis of paths to various financial services IP addresses over the course of a month from a single BGP vantage point that quantifies the frequency of path alterations resulting in the traversal of new countries. We conclude with an argument for the utility of country-based egress policies that do not require the cooperation of upstream providers.
Function Secret Sharing (FSS), introduced by Boyle et al. (Eurocrypt 2015), provides a way for additively secret-sharing a function from a given function family F. More concretely, an m-party FSS scheme splits a function f : \0, 1\n -textgreater G, for some abelian group G, into functions f1,...,fm, described by keys k1,...,km, such that f = f1 + ... + fm and every strict subset of the keys hides f. A Distributed Point Function (DPF) is a special case where F is the family of point functions, namely functions f\_\a,b\ that evaluate to b on the input a and to 0 on all other inputs. FSS schemes are useful for applications that involve privately reading from or writing to distributed databases while minimizing the amount of communication. These include different flavors of private information retrieval (PIR), as well as a recent application of DPF for large-scale anonymous messaging. We improve and extend previous results in several ways: * Simplified FSS constructions. We introduce a tensoring operation for FSS which is used to obtain a conceptually simpler derivation of previous constructions and present our new constructions. * Improved 2-party DPF. We reduce the key size of the PRG-based DPF scheme of Boyle et al. roughly by a factor of 4 and optimize its computational cost. The optimized DPF significantly improves the concrete costs of 2-server PIR and related primitives. * FSS for new function families. We present an efficient PRG-based 2-party FSS scheme for the family of decision trees, leaking only the topology of the tree and the internal node labels. We apply this towards FSS for multi-dimensional intervals. We also present a general technique for extending FSS schemes by increasing the number of parties. * Verifiable FSS. We present efficient protocols for verifying that keys (k*/1,...,k*/m ), obtained from a potentially malicious user, are consistent with some f in F. Such a verification may be critical for applications that involve private writing or voting by many users.



