Biblio
Filters: Keyword is Resiliency [Clear All Filters]
Three-Pass Protocol Scheme for Securing Image Files Using the Hill Cipher 3x3 Algorithm. 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). :130–135.
.
2021. There will be a fatal risk when the submitted file is stolen or altered by someone else during the file submission process. To maintain the security of sending files from sender to recipient, it is necessary to secure files. The science of maintaining the security of messages is called cryptography. The authors were interested in examining the Three Pass Protocol scheme in this study because it eliminated the necessity for sender and receiver to exchange keys during the operation of the Hill Cipher 3x3 algorithm. The Hill Cipher algorithm was chosen because the key has an inverse and matrix-shaped value. Then the key used must be checked whether it has a GCD (Greatest Common Divisor) grade 1 or not and will be shaped like matrix. System implementation using the Java programming language using Android Studio software. System testing is done by encrypting and decrypting files. System testing results illustrate that the process encryption and decryption by the sender is faster than the recipient, so the encryption and decryption time needed directly proportional; the larger the pixel size of the image on the image file used, the longer it takes.
Tiny-CFA: Minimalistic Control-Flow Attestation Using Verified Proofs of Execution. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :641–646.
.
2021. The design of tiny trust anchors attracted much attention over the past decade, to secure low-end MCU-s that cannot afford more expensive security mechanisms. In particular, hardware/software (hybrid) co-designs offer low hardware cost, while retaining similar security guarantees as (more expensive) hardware-based techniques. Hybrid trust anchors support security services (such as remote attestation, proofs of software update/erasure/reset, and proofs of remote software execution) in resource-constrained MCU-s, e.g., MSP430 and AVR AtMega32. Despite these advances, detection of control-flow attacks in low-end MCU-s remains a challenge, since hardware requirements for the cheapest mitigation techniques are often more expensive than the MCU-s themselves. In this work, we tackle this challenge by designing Tiny-CFA - a Control-Flow Attestation (CFA) technique with a single hardware requirement - the ability to generate proofs of remote software execution (PoX). In turn, PoX can be implemented very efficiently and securely in low-end MCU-s. Consequently, our design achieves the lowest hardware overhead of any CFA technique, while relying on a formally verified PoX as its sole hardware requirement. With respect to runtime overhead, Tiny-CFA also achieves better performance than prior CFA techniques based on code instrumentation. We implement and evaluate Tiny-CFA, analyze its security, and demonstrate its practicality using real-world publicly available applications.
Topology-based Secret Key Generation for Underwater Acoustic Networks. 2021 Fifth Underwater Communications and Networking Conference (UComms). :1—5.
.
2021. We propose a method to let a source and a destination agree on a key that remains secret to a potential eavesdropper in an underwater acoustic network (UWAN). We generate the key from the propagation delay measured over a set of multihop routes: this harvests the randomness in the UWAN topology and turns the slow sound propagation in the water into an advantage for the key agreement protocol. Our scheme relies on a route discovery handshake. During this process, all intermediate relays accumulate message processing delays, so that both the source and the destination can compute the actual propagation delays along each route, and map this information to a string of bits. Finally, via a secret key agreement from the information-theoretic security framework, we obtain an equal set of bits at the source and destination, which is provably secret to a potential eavesdropper located away from both nodes. Our simulation results show that, even for small UWANs of 4 nodes, we obtain 11 secret bits per explored topology, and that the protocol is insensitive to an average node speed of up to 0.5 m/s.
Toward an Enhanced Tool for Internet Exchange Point Detection. 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–3.
.
2021. Internet Exchange Points (IXPs) are critical components of the Internet infrastructure that affect its performance, evolution, security and economy. In this work, we introduce a technique to improve the well-known TraIXroute tool with its ability to identify IXPs. TraIXroute is a tool written in python3. It always encounters problems during its installation by network administrators and researchers. This problem remains unchanged in the field of internet ixp measurement tools. Our paper aims to make a critical analysis of TraIXroute tool which has some malfunctions. Furthermore, our main objective is to implement an improved tool for detecting ixps on the traceroute path with ipv4 and ipv6. The tool will have options for Geolocation of ixps as well as ASs. Our tool is written in C\# (C sharp) and python which are object oriented programming languages.
Toward Effective Moving Target Defense Against Adversarial AI. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :993—998.
.
2021. Deep learning (DL) models have been shown to be vulnerable to adversarial attacks. DL model security against adversarial attacks is critical to using DL-trained models in forward deployed systems, e.g. facial recognition, document characterization, or object detection. We provide results and lessons learned applying a moving target defense (MTD) strategy against iterative, gradient-based adversarial attacks. Our strategy involves (1) training a diverse ensemble of DL models, (2) applying randomized affine input transformations to inputs, and (3) randomizing output decisions. We report a primary lesson that this strategy is ineffective against a white-box adversary, which could completely circumvent output randomization using a deterministic surrogate. We reveal how our ensemble models lacked the diversity necessary for effective MTD. We also evaluate our MTD strategy against a black-box adversary employing an ensemble surrogate model. We conclude that an MTD strategy against black-box adversarial attacks crucially depends on lack of transferability between models.
Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :14–25.
.
2021. Recent work on intrusion-tolerance has shown that resilience to sophisticated network attacks requires system replicas to be deployed across at least three geographically distributed sites. While commodity data centers offer an attractive solution for hosting these sites due to low cost and management overhead, their use raises significant confidentiality concerns: system operators may not want private data or proprietary algorithms exposed to servers outside their direct control. We present a new model for Byzantine Fault Tolerant replicated systems that moves toward “intrusion tolerance as a service”. Under this model, application logic and data are only exposed to servers hosted on the system operator's premises. Additional offsite servers hosted in data centers can support the needed resilience without executing application logic or accessing unencrypted state. We have implemented this approach in the open-source Spire system, and our evaluation shows that the performance overhead of providing confidentiality can be less than 4% in terms of latency.
Toward Pinpointing Data Leakage from Advanced Persistent Threats. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :157–162.
.
2021. Advanced Persistent Threats (APT) consist of most skillful hackers who employ sophisticated techniques to stealthily gain unauthorized access to private networks and exfiltrate sensitive data. When their existence is discovered, organizations - if they can sustain business continuity - mostly have to perform forensics activities to assess the damage of the attack and discover the extent of sensitive data leakage. In this paper, we construct a novel framework to pinpoint sensitive data that may have been leaked in such an attack. Our framework consists of creating baseline fingerprints for each workstation for setting normal activity, and we consider the change in the behavior of the network overall. We compare the accused fingerprint with sensitive database information by utilizing both Levenstein distance and TF-IDF/cosine similarity resulting in a similarity percentage. This allows us to pinpoint what part of data was exfiltrated by the perpetrators, where in the network the data originated, and if that data is sensitive to the private company's network. We then perform feasibility experiments to show that even these simple methods are feasible to run on a network representative of a mid-size business.
Towards A Distributed Ledger Based Verifiable Trusted Protocol For VANET. 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2). :1—6.
.
2021. To ensure traffic safety and proper operation of vehicular networks, safety messages or beacons are periodically broadcasted in Vehicular Adhoc Networks (VANETs) to neighboring nodes and road side units (RSU). Thus, authenticity and integrity of received messages along with the trust in source nodes is crucial and highly required in applications where a failure can result in life-threatening situations. Several digital signature based approaches have been described in literature to achieve the authenticity of these messages. In these schemes, scenarios having high level of vehicle density are handled by RSU where aggregated signature verification is done. However, most of these schemes are centralized and PKI based where our goal is to develop a decentralized dynamic system. Along with authenticity and integrity, trust management plays an important role in VANETs which enables ways for secure and verified communication. A number of trust management models have been proposed but it is still an ongoing matter of interest, similarly authentication which is a vital security service to have during communication is not mostly present in the literature work related to trust management systems. This paper proposes a secure and publicly verifiable communication scheme for VANET which achieves source authentication, message authentication, non repudiation, integrity and public verifiability. All of these are achieved through digital signatures, Hash Message Authentication Code (HMAC) technique and logging mechanism which is aided by blockchain technology.
Towards a Distributed Testbed for Wireless Embedded Devices for Industrial Applications. 2021 17th IEEE International Conference on Factory Communication Systems (WFCS). :135–138.
.
2021. Wireless embedded devices are key elements of Internet-of-Things (IoT) and industrial IoT (IIoT) applications. The complexity of these devices as well as the number of connected devices to networks increase steadily. The high intricacy of the overall system makes it error-prone and vulnerable to attacks and leads to the need to test individual parts or even the whole system. Therefore, this paper presents the concept of a flexible and distributed testbed to evaluate correct behavior in various operation or attack scenarios. It is based on the Robot Operating System (ROS) as communication framework to ensure modularity and expandability. The testbed integrates RF-jamming and measurement devices to evaluate remote attack scenarios and interference issues. An energy harvesting emulation cell is used to evaluate different real-world energy harvesting scenarios. A climatic test chamber allows to investigate the influence of temperature and humidity conditions on the system-under-test. As a testbed application scenario, the automated evaluation of an energy harvesting wireless sensor network designed to instrument automotive engine test benches is presented.
Towards a firmware TPM on RISC-V. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :647—650.
.
2021. To develop the next generation of Internet of Things, Edge devices and systems which leverage progress in enabling technologies such as 5G, distributed computing and artificial intelligence (AI), several requirements need to be developed and put in place to make the devices smarter. A major requirement for all the above applications is the long-term security and trust computing infrastructure. Trusted Computing requires the introduction inside of the platform of a Trusted Platform Module (TPM). Traditionally, a TPM was a discrete and dedicated module plugged into the platform to give TPM capabilities. Recently, processors manufacturers started integrating trusted computing features into their processors. A significant drawback of this approach is the need for a permanent modification of the processor microarchitecture. In this context, we suggest an analysis and a design of a software-only TPM for RISC-V processors based on seL4 microkernel and OP-TEE.
Towards a General Deep Feature Extractor for Facial Expression Recognition. 2021 IEEE International Conference on Image Processing (ICIP). :2339—2342.
.
2021. The human face conveys a significant amount of information. Through facial expressions, the face is able to communicate numerous sentiments without the need for verbalisation. Visual emotion recognition has been extensively studied. Recently several end-to-end trained deep neural networks have been proposed for this task. However, such models often lack generalisation ability across datasets. In this paper, we propose the Deep Facial Expression Vector ExtractoR (DeepFEVER), a new deep learning-based approach that learns a visual feature extractor general enough to be applied to any other facial emotion recognition task or dataset. DeepFEVER outperforms state-of-the-art results on the AffectNet and Google Facial Expression Comparison datasets. DeepFEVER’s extracted features also generalise extremely well to other datasets – even those unseen during training – namely, the Real-World Affective Faces (RAF) dataset.
Towards a Threat Modeling Approach Addressing Security and Safety in OT Environments. 2021 17th IEEE International Conference on Factory Communication Systems (WFCS). :37–40.
.
2021. In Industry 4.0, Information Technology (IT) and Operational Technology (OT) tend to converge further with an increasing interdependence of safety and security issues to be considered. On one hand, cyber attacks are possible which can alter implemented safety functionality leading to situations where people are harmed, serious injuries may occur or the environment gets damaged. On the other side, safety can also impact security. For instance, the misuse of a Safety Instrumented System (SIS) may force a machine or a production line to shut down resulting in a denial of service. To prevent or mitigate risks from such scenarios, this paper proposes a threat modeling technique which addresses an integrated view on safety and security. The approach is tailored to the industrial automation domain considering plausible attacks and evaluating risks based on three different metrics. The metrics selected consist of Common Vulnerability Scoring System (CVSS) used as an international standard for rating cyber security vulnerabilities, Security Level (SL) from IEC 62443 to rate cyber security risks in OT environments w.r.t. the underlying architecture, and Safety Integrity Level (SIL) from IEC 61508 to rate safety risks. Due to the variety of use cases involving the chosen metrics, the approach is also feasible for followup analyses, such as integrated safety and security assessments or audits.
Towards a Translation-Based Method for Dynamic Heterogeneous Network Embedding. ICC 2021 - IEEE International Conference on Communications. :1–6.
.
2021. Network embedding, which aims to map the discrete network topology to a continuous low-dimensional representation space with the major topological properties preserved, has emerged as an essential technique to support various network inference tasks. However, incorporating both the evolutionary nature and the network's heterogeneity remains a challenge for existing network embedding methods. In this study, we propose a novel Translation-Based Dynamic Heterogeneous Network Embedding (TransDHE) approach to consider both the aspects simultaneously. For a dynamic heterogeneous network with a sequence of snapshots and multiple types of nodes and edges, we introduce a translation-based embedding module to capture the heterogeneous characteristics (e.g., type information) of each single snapshot. An orthogonal alignment module and RNN-based aggregation module are then applied to explore the evolutionary patterns among multiple successive snapshots for the final representation learning. Extensive experiments on a set of real-world networks demonstrate that TransDHE can derive the more informative embedding result for the network dynamic and heterogeneity over state-of-the-art network embedding baselines.
Towards an Immersive Learning Knowledge Tree - a Conceptual Framework for Mapping Knowledge and Tools in the Field. 2021 7th International Conference of the Immersive Learning Research Network (iLRN). :1–8.
.
2021. The interdisciplinary field of immersive learning research is scattered. Combining efforts for better exploration of this field from the different disciplines requires researchers to communicate and coordinate effectively. We call upon the community of immersive learning researchers for planting the Knowledge Tree of Immersive Learning Research, a proposal for a systematization effort for this field, combining both scholarly and practical knowledge, cultivating a robust and ever-growing knowledge base and methodological toolbox for immersive learning. This endeavor aims at promoting evidence-informed practice and guiding future research in the field. This paper contributes with the rationale for three objectives: 1) Developing common scientific terminology amidst the community of researchers; 2) Cultivating a common understanding of methodology, and 3) Advancing common use of theoretical approaches, frameworks, and models.
Towards An SDN Assisted IDS. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
.
2021. Modern Intrusion Detection Systems are able to identify and check all traffic crossing the network segments that they are only set to monitor. Traditional network infrastructures use static detection mechanisms that check and monitor specific types of malicious traffic. To mitigate this potential waste of resources and improve scalability across an entire network, we propose a methodology which deploys distributed IDS in a Software Defined Network allowing them to be used for specific types of traffic as and when it appears on a network. The core of our work is the creation of an SDN application that takes input from a Snort IDS instances, thus working as a classifier for incoming network traffic with a static ruleset for those classifications. Our application has been tested on a virtualised platform where it performed as planned holding its position for limited use on static and controlled test environments.
Towards Business Sustainability via an Automated Gaps Closure Approach. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :182–185.
.
2021. To ensure organization business and resources sustainability, it is required to establish Business Continuity Management System (BCMS). A key component of BCMS is conducting drills, which enables the organization to assess its readiness, sustainability and resiliency with an adequate planning for business continuation of unforeseen circumstances. The testing of the business services and processes is crucial and failing to conduct drills would lead to improper response and recovery strategies which will result in major financial loses. The drills aim to evaluate IT organization response, IT services recovery, identify observations, lessons learned and areas of improvement. As a result, identified observations are shared with service owners and tracked by BCMS to ensure closing all observations. However, tracking observations in a traditional manual approach is always associated with several challenges. This paper presents our experience in planning, executing, and validating the process of drills, by illustrating how an organization could overcome manual approach challenges with an automated observation tracking system. Additionally, we present our solution results in terms of time management and cost saving.
Towards Efficient Co-audit of Privacy-Preserving Data on Consortium Blockchain via Group Key Agreement. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :494–501.
.
2021. Blockchain is well known for its storage consistency, decentralization and tamper-proof, but the privacy disclosure and difficulty in auditing discourage the innovative application of blockchain technology. As compared to public blockchain and private blockchain, consortium blockchain is widely used across different industries and use cases due to its privacy-preserving ability, auditability and high transaction rate. However, the present co-audit of privacy-preserving data on consortium blockchain is inefficient. Private data is usually encrypted by a session key before being published on a consortium blockchain for privacy preservation. The session key is shared with transaction parties and auditors for their access. For decentralizing auditorial power, multiple auditors on the consortium blockchain jointly undertake the responsibility of auditing. The distribution of the session key to an auditor requires individually encrypting the session key with the public key of the auditor. The transaction initiator needs to be online when each auditor asks for the session key, and one encryption of the session key for each auditor consumes resources. This work proposes GAChain and applies group key agreement technology to efficiently co-audit privacy-preserving data on consortium blockchain. Multiple auditors on the consortium blockchain form a group and utilize the blockchain to generate a shared group encryption key and their respective group decryption keys. The session key is encrypted only once by the group encryption key and stored on the consortium blockchain together with the encrypted private data. Auditors then obtain the encrypted session key from the chain and decrypt it with their respective group decryption key for co-auditing. The group key generation is involved only when the group forms or group membership changes, which happens very infrequently on the consortium blockchain. We implement the prototype of GAChain based on Hyperledger Fabric framework. Our experimental studies demonstrate that GAChain improves the co-audit efficiency of transactions containing private data on Fabric, and its incurred overhead is moderate.
Towards Embedding Data Provenance in Files. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1319–1325.
.
2021. Data provenance (keeping track of who did what, where, when and how) boasts of various attractive use cases for distributed systems, such as intrusion detection, forensic analysis and secure information dependability. This potential, however, can only be realized if provenance is accessible by its primary stakeholders: the end-users. Existing provenance systems are designed in a `all-or-nothing' fashion, making provenance inaccessible, difficult to extract and crucially, not controlled by its key stakeholders. To mitigate this, we propose that provenance be separated into system, data-specific and file-metadata provenance. Furthermore, we expand data-specific provenance as changes at a fine-grain level, or provenance-per-change, that is recorded alongside its source. We show that with the use of delta-encoding, provenance-per-change is viable, asserting our proposed architecture to be effectively realizable.
Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework ICCAD Special Session Paper. 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–9.
.
2021. The security and privacy concerns along with the amount of data that is required to be processed on regular basis has pushed processing to the edge of the computing systems. Deploying advanced Neural Networks (NN), such as deep neural networks (DNNs) and spiking neural networks (SNNs), that offer state-of-the-art results on resource-constrained edge devices is challenging due to the stringent memory and power/energy constraints. Moreover, these systems are required to maintain correct functionality under diverse security and reliability threats. This paper first discusses existing approaches to address energy efficiency, reliability, and security issues at different system layers, i.e., hardware (HW) and software (SW). Afterward, we discuss how to further improve the performance (latency) and the energy efficiency of Edge AI systems through HW/SW-level optimizations, such as pruning, quantization, and approximation. To address reliability threats (like permanent and transient faults), we highlight cost-effective mitigation techniques, like fault-aware training and mapping. Moreover, we briefly discuss effective detection and protection techniques to address security threats (like model and data corruption). Towards the end, we discuss how these techniques can be combined in an integrated cross-layer framework for realizing robust and energy-efficient Edge AI systems.
Towards expert-guided elucidation of cyber attacks through interactive inductive logic programming. 2021 13th International Conference on Knowledge and Systems Engineering (KSE). :1—7.
.
2021. This paper proposes a logic-based machine learning approach called Acuity which is designed to facilitate user-guided elucidation of novel phenomena from evidence sparsely distributed across large volumes of linked relational data. The work builds on systems from the field of Inductive Logic Programming (ILP) by introducing a suite of new techniques for interacting with domain experts and data sources in a way that allows complex logical reasoning to be strategically exploited on large real-world databases through intuitive hypothesis-shaping and data-caching functionality. We propose two methods for rebutting or shaping candidate hypotheses and two methods for querying or importing relevant data from multiple sources. The benefits of Acuity are illustrated in a proof-of-principle case study involving a retrospective analysis of the CryptoWall ransomware attack using data from a cyber security testbed comprising a small business network and an infected laptop.
Towards Network-Wide Scheduling for Cyclic Traffic in IP-based Deterministic Networks. 2021 4th International Conference on Hot Information-Centric Networking (HotICN). :117–122.
.
2021. The emerging time-sensitive applications, such as industrial automation, smart grids, and telesurgery, pose strong demands for enabling large-scale IP-based deterministic networks. The IETF DetNet working group recently proposes a Cycle Specified Queuing and Forwarding (CSQF) solution. However, CSQF only specifies an underlying device-level primitive while how to achieve network-wide flow scheduling remains undefined. Previous scheduling mechanisms are mostly oriented to the context of local area networks, making them inapplicable to the cyclic traffic in wide area networks. In this paper, we design the Cycle Tags Planning (CTP) mechanism, a first mathematical model to enable network-wide scheduling for cyclic traffic in large-scale deterministic networks. Then, a novel scheduling algorithm named flow offset and cycle shift (FO-CS) is designed to compute the flows' cycle tags. The FO-CS algorithm is evaluated under long-distance network topologies in remote industrial control scenarios. Compared with the Naive algorithm without using FO-CS, simulation results demonstrate that FO-CS improves the scheduling flow number by 31.2% in few seconds.
Towards Privacy-Friendly Smart Products. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—7.
.
2021. Smart products, such as toy robots, must comply with multiple legal requirements of the countries they are sold and used in. Currently, compliance with the legal environment requires manually customizing products for different markets. In this paper, we explore a design approach for smart products that enforces compliance with aspects of the European Union’s data protection principles within a product’s firmware through a toy robot case study. To this end, we present an exchange between computer scientists and legal scholars that identified the relevant data flows, their processing needs, and the implementation decisions that could allow a device to operate while complying with the EU data protection law. By designing a data-minimizing toy robot, we show that the variety, amount, and quality of data that is exposed, processed, and stored outside a user’s premises can be considerably reduced while preserving the device’s functionality. In comparison with a robot designed using a traditional approach, in which 90% of the collected types of information are stored by the data controller or a remote service, our proposed design leads to the mandatory exposure of only 7 out of 15 collected types of information, all of which are legally required by the data controller to demonstrate consent. Moreover, our design is aligned with the Data Privacy Vocabulary, which enables the toy robot to cross geographic borders and seamlessly adjust its data processing activities to the local regulations.
Towards Reliable Spatial Memory Safety for Embedded Software by Combining Checked C with Concolic Testing. 2021 58th ACM/IEEE Design Automation Conference (DAC). :667—672.
.
2021. In this paper we propose to combine the safe C dialect Checked C with concolic testing to obtain an effective methodology for attaining safer C code. Checked C is a modern and backward compatible extension to the C programming language which provides facilities for writing memory-safe C code. We utilize incremental conversions of unsafe C software to Checked C. After each increment, we leverage concolic testing, an effective test generation technique, to support the conversion process by searching for newly introduced and existing bugs.Our RISC-V experiments using the RIOT Operating System (OS) demonstrate the effectiveness of our approach. We uncovered 4 previously unknown bugs and 3 bugs accidentally introduced through our conversion process.
Towards Visual Analytics Dashboards for Provenance-driven Static Application Security Testing. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :42–46.
.
2021. The use of static code analysis tools for security audits can be time consuming, as the many existing tools focus on different aspects and therefore development teams often use several of these tools to keep code quality high and prevent security issues. Displaying the results of multiple tools, such as code smells and security warnings, in a unified interface can help developers get a better overview and prioritize upcoming work. We present visualizations and a dashboard that interactively display results from static code analysis for “interesting” commits during development. With this, we aim to provide an effective visual analytics tool for code security analysis results.
Traditional Mask Augmented Reality Application. 2021 International Conference on Information Management and Technology (ICIMTech). 1:595—598.
.
2021. The industrial revolution 4.0 has become a challenge for various sectors in mastering information technology, one of which is the arts and culture sector. Cultural arts that are quite widely spread and developed in Indonesia are traditional masks. Traditional masks are one of the oldest and most beautiful cultures in Indonesia. However, with the development of the era to the digital world in the era of the industrial revolution 4.0, this beloved culture is fading due to the entry of foreign cultures and technological developments. Many young people who succeed the nation do not understand this cultural art, namely traditional masks. So those cultural arts such as traditional masks can still keep up with the development of digital technology in industry 4.0, we conduct research to use technology to preserve this traditional mask culture. The research uses the ADDIE method starting with Analyze, Design, Develop, Implement, and Evaluate. We took some examples of traditional masks such as Malangan masks, Cirebon masks, and Panji masks from several regions in Indonesia. This research implements marker-based Augmented reality technology and makes a traditional mask book that can be a means of augmented reality.