Biblio
Network coding has been proposed to be built into Named Data Networking (NDN) for achieving efficient simultaneous content delivery. Network coding allows intermediate nodes to perform arbitrary coding operations on Data packets. One salient feature of NDN is its content-based security by protecting each Data packet with a signature signed by its publisher. However, in the network coding-based NDN, it remains unclear how to securely and efficiently sign a recoded Data packet at an intermediate router. This work proposes a mechanism to enable linearly homomorphic signatures in network coding-based NDN so as to directly generate a signature for a recoded Data packet by combining the signatures of those Data packets on which the recoding operation is performed.
Named Data Networking (NDN) intrinsically supports in-network caching and multipath forwarding. The two salient features offer the potential to simultaneously transmit content segments that comprise the requested content from original content publishers and in-network caches. However, due to the complexity of maintaining the reachability information of off-path cached content at the fine-grained packet level of granularity, the multipath forwarding and off-path cached copies are significantly underutilized in NDN so far. Network coding enabled NDN, referred to as NC-NDN, was proposed to effectively utilize multiple on-path routes to transmit content, but off-path cached copies are still unexploited. This work enhances NC-NDN with an On-demand Off-path Cache Exploration based Multipath Forwarding strategy, dubbed as O2CEMF, to take full advantage of the multipath forwarding to efficiently utilize off-path cached content. In O2CEMF, each network node reactively explores the reachability information of nearby off-path cached content when consumers begin to request a generation of content, and maintains the reachability at the coarse-grained generation level of granularity instead. Then the consumers simultaneously retrieve content from the original content publisher(s) and the explored capable off-path caches. Our experimental studies validate that this strategy improves the content delivery performance efficiently as compared to that in the present NC-NDN.