Luo, Yukui, Gongye, Cheng, Ren, Shaolei, Fei, Yunsi, Xu, Xiaolin.
2020.
Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs. 2020 IEEE 38th International Conference on Computer Design (ICCD). :545–552.
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.
Zhang, Yaqin, Ma, Duohe, Sun, Xiaoyan, Chen, Kai, Liu, Feng.
2020.
WGT: Thwarting Web Attacks Through Web Gene Tree-based Moving Target Defense. 2020 IEEE International Conference on Web Services (ICWS). :364–371.
Moving target defense (MTD) suggests a game-changing way of enhancing web security by increasing uncertainty and complexity for attackers. A good number of web MTD techniques have been investigated to counter various types of web attacks. However, in most MTD techniques, only fixed attributes of the attack surface are shifted, leaving the rest exploitable by the attackers. Currently, there are few mechanisms to support the whole attack surface movement and solve the partial coverage problem, where only a fraction of the possible attributes shift in the whole attack surface. To address this issue, this paper proposes a Web Gene Tree (WGT) based MTD mechanism. The key point is to extract all potential exploitable key attributes related to vulnerabilities as web genes, and mutate them using various MTD techniques to withstand various attacks. Experimental results indicate that, by randomly shifting web genes and diversely inserting deceptive ones, the proposed WGT mechanism outperforms other existing schemes and can significantly improve the security of web applications.