Biblio

Found 6881 results

Filters: Keyword is resilience  [Clear All Filters]
2023-05-12
Ornik, Melkior, Bouvier, Jean-Baptiste.  2022.  Assured System-Level Resilience for Guaranteed Disaster Response. 2022 IEEE International Smart Cities Conference (ISC2). :1–4.
Resilience of urban infrastructure to sudden, system-wide, potentially catastrophic events is a critical need across domains. The growing connectivity of infrastructure, including its cyber-physical components which can be controlled in real time, offers an attractive path towards rapid adaptation to adverse events and adjustment of system objectives. However, existing work in the field often offers disjoint approaches that respond to particular scenarios. On the other hand, abstract work on control of complex systems focuses on attempting to adapt to the changes in the system dynamics or environment, but without understanding that the system may simply not be able to perform its original task after an adverse event. To address this challenge, this programmatic paper proposes a vision for a new paradigm of infrastructure resilience. Such a framework treats infrastructure across domains through a unified theory of controlled dynamical systems, but remains cognizant of the lack of knowledge about the system following a widespread adverse event and aims to identify the system's fundamental limits. As a result, it will enable the infrastructure operator to assess and assure system performance following an adverse event, even if the exact nature of the event is not yet known. Building off ongoing work on assured resilience of control systems, in this paper we identify promising early results, challenges that motivate the development of resilience theory for infrastructure system, and possible paths forward for the proposed effort.
ISSN: 2687-8860
2023-05-19
Chen, Yuhang, Long, Yue, Li, Tieshan.  2022.  Attacks Detection and Security Control Against False Data Injection Attacks Based on Interval Type-2 Fuzzy System. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
This paper is concered with the nonlinear cyber physical system (CPS) with uncertain parameters under false data injection (FDI) attacks. The interval type-2 (IT2) fuzzy model is utilized to approximate the nonlinear system, then the nonlinear system can be represented as a convex combination of linear systems. To detect the FDI attacks, a novel robust fuzzy extended state observer with H∞ preformance is proposed, where the fuzzy rules are utilized to the observer to estimate the FDI attacks. Utilizing the observation of the FDI attacks, a security control scheme is proposed in this paper, in which a compensator is designed to offset the FDI attacks. Simulation examples are given to illustrate the effecitveness of the proposed security scheme.
G, Amritha, Kh, Vishakh, C, Jishnu Shankar V, Nair, Manjula G.  2022.  Autoencoder Based FDI Attack Detection Scheme For Smart Grid Stability. 2022 IEEE 19th India Council International Conference (INDICON). :1—5.
One of the major concerns in the real-time monitoring systems in a smart grid is the Cyber security threat. The false data injection attack is emerging as a major form of attack in Cyber-Physical Systems (CPS). A False data Injection Attack (FDIA) can lead to severe issues like insufficient generation, physical damage to the grid, power flow imbalance as well as economical loss. The recent advancements in machine learning algorithms have helped solve the drawbacks of using classical detection techniques for such attacks. In this article, we propose to use Autoencoders (AE’s) as a novel Machine Learning approach to detect FDI attacks without any major modifications. The performance of the method is validated through the analysis of the simulation results. The algorithm achieves optimal accuracy owing to the unsupervised nature of the algorithm.
2023-08-18
Varkey, Mariam, John, Jacob, S., Umadevi K..  2022.  Automated Anomaly Detection Tool for Industrial Control System. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—6.
Industrial Control Systems (ICS) are not secure by design–with recent developments requiring them to connect to the Internet, they tend to be highly vulnerable. Additionally, attacks on critical infrastructures such as power grids and nuclear plants can cause significant damage and loss of lives. Since such attacks tend to generate anomalies in the systems, an efficient way of attack detection is to monitor the systems and identify anomalies in real-time. An automated anomaly detection tool is introduced in this paper. Additionally, the functioning of the systems is viewed as Finite State Automata. Specific sensor measurements are used to determine permissible transitions, and statistical measures such as the Interquartile Range are used to determine acceptable boundaries for the remaining sensor measurements provided by the system. Deviations from the boundaries or permissible transitions are considered as anomalies. An additional feature is the provision of a finite state automata diagram that provides the operational constraints of a system, given a set of regulated input. This tool showed a high anomaly detection rate when tested with three types of ICS. The concepts are also benchmarked against a state-of-the-art anomaly detection algorithm called Isolation Forest, and the results are provided.
2023-06-22
Wang, Danni, Li, Sizhao.  2022.  Automated DDoS Attack Mitigation for Software Defined Network. 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :100–104.
Network security is a prominent topic that is gaining international attention. Distributed Denial of Service (DDoS) attack is often regarded as one of the most serious threats to network security. Software Defined Network (SDN) decouples the control plane from the data plane, which can meet various network requirements. But SDN can also become the object of DDoS attacks. This paper proposes an automated DDoS attack mitigation method that is based on the programmability of the Ryu controller and the features of the OpenFlow switch flow tables. The Mininet platform is used to simulate the whole process, from SDN traffic generation to using a K-Nearest Neighbor model for traffic classification, as well as identifying and mitigating DDoS attack. The packet counts of the victim's malicious traffic input port are significantly lower after the mitigation method is implemented than before the mitigation operation. The purpose of mitigating DDoS attack is successfully achieved.
ISSN: 2163-5056
2023-07-20
Khokhlov, Igor, Okutan, Ahmet, Bryla, Ryan, Simmons, Steven, Mirakhorli, Mehdi.  2022.  Automated Extraction of Software Names from Vulnerability Reports using LSTM and Expert System. 2022 IEEE 29th Annual Software Technology Conference (STC). :125—134.
Software vulnerabilities are closely monitored by the security community to timely address the security and privacy issues in software systems. Before a vulnerability is published by vulnerability management systems, it needs to be characterized to highlight its unique attributes, including affected software products and versions, to help security professionals prioritize their patches. Associating product names and versions with disclosed vulnerabilities may require a labor-intensive process that may delay their publication and fix, and thereby give attackers more time to exploit them. This work proposes a machine learning method to extract software product names and versions from unstructured CVE descriptions automatically. It uses Word2Vec and Char2Vec models to create context-aware features from CVE descriptions and uses these features to train a Named Entity Recognition (NER) model using bidirectional Long short-term memory (LSTM) networks. Based on the attributes of the product names and versions in previously published CVE descriptions, we created a set of Expert System (ES) rules to refine the predictions of the NER model and improve the performance of the developed method. Experiment results on real-life CVE examples indicate that using the trained NER model and the set of ES rules, software names and versions in unstructured CVE descriptions could be identified with F-Measure values above 0.95.
2023-09-01
Sumoto, Kensuke, Kanakogi, Kenta, Washizaki, Hironori, Tsuda, Naohiko, Yoshioka, Nobukazu, Fukazawa, Yoshiaki, Kanuka, Hideyuki.  2022.  Automatic labeling of the elements of a vulnerability report CVE with NLP. 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). :164—165.
Common Vulnerabilities and Exposures (CVE) databases contain information about vulnerabilities of software products and source code. If individual elements of CVE descriptions can be extracted and structured, then the data can be used to search and analyze CVE descriptions. Herein we propose a method to label each element in CVE descriptions by applying Named Entity Recognition (NER). For NER, we used BERT, a transformer-based natural language processing model. Using NER with machine learning can label information from CVE descriptions even if there are some distortions in the data. An experiment involving manually prepared label information for 1000 CVE descriptions shows that the labeling accuracy of the proposed method is about 0.81 for precision and about 0.89 for recall. In addition, we devise a way to train the data by dividing it into labels. Our proposed method can be used to label each element automatically from CVE descriptions.
2023-08-24
Bhosale, Pushparaj, Kastner, Wolfgang, Sauter, Thilo.  2022.  Automating Safety and Security Risk Assessment in Industrial Control Systems: Challenges and Constraints. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
Currently, risk assessment of industrial control systems is static and performed manually. With the increased convergence of operational technology and information technology, risk assessment has to incorporate a combined safety and security analysis along with their interdependency. This paper investigates the data inputs required for safety and security assessments, also if the collection and utilisation of such data can be automated. A particular focus is put on integrated assessment methods which have the potential for automation. In case the overall process to identify potential hazards and threats and analyze what could happen if they occur can be automated, manual efforts and cost of operation can be reduced, thus also increasing the overall performance of risk assessment.
2023-01-13
Bryushinin, Anton O., Dushkin, Alexandr V., Melshiyan, Maxim A..  2022.  Automation of the Information Collection Process by Osint Methods for Penetration Testing During Information Security Audit. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :242—246.
The purpose of this article is to consider one of the options for automating the process of collecting information from open sources when conducting penetration testing in an organization's information security audit using the capabilities of the Python programming language. Possible primary vectors for collecting information about the organization, personnel, software, and hardware are shown. The basic principles of operation of the software product are presented in a visual form, which allows automated analysis of information from open sources about the object under study.
2022-12-09
Fakhartousi, Amin, Meacham, Sofia, Phalp, Keith.  2022.  Autonomic Dominant Resource Fairness (A-DRF) in Cloud Computing. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1626—1631.
In the world of information technology and the Internet, which has become a part of human life today and is constantly expanding, Attention to the users' requirements such as information security, fast processing, dynamic and instant access, and costs savings has become essential. The solution that is proposed for such problems today is a technology that is called cloud computing. Today, cloud computing is considered one of the most essential distributed tools for processing and storing data on the Internet. With the increasing using this tool, the need to schedule tasks to make the best use of resources and respond appropriately to requests has received much attention, and in this regard, many efforts have been made and are being made. To this purpose, various algorithms have been proposed to calculate resource allocation, each of which has tried to solve equitable distribution challenges while using maximum resources. One of these calculation methods is the DRF algorithm. Although it offers a better approach than previous algorithms, it faces challenges, especially with time-consuming resource allocation computing. These challenges make the use of DRF more complex than ever in the low number of requests with high resource capacity as well as the high number of simultaneous requests. This study tried to reduce the computations costs associated with the DRF algorithm for resource allocation by introducing a new approach to using this DRF algorithm to automate calculations by machine learning and artificial intelligence algorithms (Autonomic Dominant Resource Fairness or A-DRF).
2023-06-09
Qiang, Weizhong, Luo, Hao.  2022.  AutoSlicer: Automatic Program Partitioning for Securing Sensitive Data Based-on Data Dependency Analysis and Code Refactoring. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :239—247.
Legacy programs are normally monolithic (that is, all code runs in a single process and is not partitioned), and a bug in a program may result in the entire program being vulnerable and therefore untrusted. Program partitioning can be used to separate a program into multiple partitions, so as to isolate sensitive data or privileged operations. Manual program partitioning requires programmers to rewrite the entire source code, which is cumbersome, error-prone, and not generic. Automatic program partitioning tools can separate programs according to the dependency graph constructed based on data or programs. However, programmers still need to manually implement remote service interfaces for inter-partition communication. Therefore, in this paper, we propose AutoSlicer, whose purpose is to partition a program more automatically, so that the programmer is only required to annotate sensitive data. AutoSlicer constructs accurate data dependency graphs (DDGs) by enabling execution flow graphs, and the DDG-based partitioning algorithm can compute partition information based on sensitive annotations. In addition, the code refactoring toolchain can automatically transform the source code into sensitive and insensitive partitions that can be deployed on the remote procedure call framework. The experimental evaluation shows that AutoSlicer can effectively improve the accuracy (13%-27%) of program partitioning by enabling EFG, and separate real-world programs with a relatively smaller performance overhead (0.26%-9.42%).
2023-07-21
Paul, Shuva, Kundu, Ripan Kumar.  2022.  A Bagging MLP-based Autoencoder for Detection of False Data Injection Attack in Smart Grid. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
The accelerated move toward adopting the Smart Grid paradigm has resulted in numerous drawbacks as far as security is concerned. Traditional power grids are becoming more vulnerable to cyberattacks as all the control decisions are generated based on the data the Smart Grid generates during its operation. This data can be tampered with or attacked in communication lines to mislead the control room in decision-making. The false data injection attack (FDIA) is one of the most severe cyberattacks on today’s cyber-physical power system, as it has the potential to cause significant physical and financial damage. However, detecting cyberattacks are incredibly challenging since they have no known patterns. In this paper, we launch a random FDIA on IEEE-39 bus system. Later, we propose a Bagging MLP-based autoencoder to detect the FDIAs in the power system and compare the result with a single ML model. The Bagging MLP-based autoencoder outperforms the Isolation forest while detecting FDIAs.
2023-03-17
Chakraborty, Partha Sarathi, Kumar, Puspesh, Chandrawanshi, Mangesh Shivaji, Tripathy, Somanath.  2022.  BASDB: Blockchain assisted Secure Outsourced Database Search. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1–6.
The outsourcing of databases is very popular among IT companies and industries. It acts as a solution for businesses to ensure availability of the data for their users. The solution of outsourcing the database is to encrypt the data in a form where the database service provider can perform relational operations over the encrypted database. At the same time, the associated security risk of data leakage prevents many potential industries from deploying it. In this paper, we present a secure outsourcing database search scheme (BASDB) with the use of a smart contract for search operation over index of encrypted database and storing encrypted relational database in the cloud. Our proposed scheme BASDB is a simple and practical solution for effective search on encrypted relations and is well resistant to information leakage against attacks like search and access pattern leakage.
2023-01-13
Kiratsata, Harsh J., Raval, Deep P., Viras, Payal K., Lalwani, Punit, Patel, Himanshu, D., Panchal S..  2022.  Behaviour Analysis of Open-Source Firewalls Under Security Crisis. 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :105—109.
Nowadays, in this COVID era, work from home is quietly more preferred than work from the office. Due to this, the need for a firewall has been increased day by day. Every organization uses the firewall to secure their network and create VPN servers to allow their employees to work from home. Due to this, the security of the firewall plays a crucial role. In this paper, we have compared the two most popular open-source firewalls named pfSense and OPNSense. We have examined the security they provide by default without any other attachment. To do this, we performed four different attacks on the firewalls and compared the results. As a result, we have observed that both provide the same security still pfSense has a slight edge when an attacker tries to perform a Brute force attack over OPNSense.
2023-05-19
Mestel, David.  2022.  Beware of Greeks bearing entanglement? Quantum covert channels, information flow and non-local games 2022 IEEE 35th Computer Security Foundations Symposium (CSF). :276—288.
Can quantum entanglement increase the capacity of (classical) covert channels? To one familiar with Holevo's Theorem it is tempting to think that the answer is obviously no. However, in this work we show: quantum entanglement can in fact increase the capacity of a classical covert channel, in the presence of an active adversary; on the other hand, a zero-capacity channel is not improved by entanglement, so entanglement cannot create ‘purely quantum’ covert channels; the problem of determining the capacity of a given channel in the presence of entanglement is undecidable; but there is an algorithm to bound the entangled capacity of a channel from above, adapted from the semi-definite hierarchy from the theory of non-local games, whose close connection to channel capacity is at the core of all of our results.
2023-04-14
Peng, Haifeng, Cao, Chunjie, Sun, Yang, Li, Haoran, Wen, Xiuhua.  2022.  Blind Identification of Channel Codes under AWGN and Fading Conditions via Deep Learning. 2022 International Conference on Networking and Network Applications (NaNA). :67–73.
Blind identification of channel codes is crucial in intelligent communication and non-cooperative signal processing, and it plays a significant role in wireless physical layer security, information interception, and information confrontation. Previous researches show a high computation complexity by manual feature extractions, in addition, problems of indisposed accuracy and poor robustness are to be resolved in a low signal-to-noise ratio (SNR). For solving these difficulties, based on deep residual shrinkage network (DRSN), this paper proposes a novel recognizer by deep learning technologies to blindly distinguish the type and the parameter of channel codes without any prior knowledge or channel state, furthermore, feature extractions by the neural network from codewords can avoid intricate calculations. We evaluated the performance of this recognizer in AWGN, single-path fading, and multi-path fading channels, the results of the experiments showed that the method we proposed worked well. It could achieve over 85 % of recognition accuracy for channel codes in AWGN channels when SNR is not lower than 4dB, and provide an improvement of more than 5% over the previous research in recognition accuracy, which proves the validation of the proposed method.
2023-09-08
Yadav, Ranjeet, Ritambhara, Vaigandla, Karthik Kumar, Ghantasala, G S Pradeep, Singh, Rajesh, Gangodkar, Durgaprasad.  2022.  The Block Chain Technology to protect Data Access using Intelligent Contracts Mechanism Security Framework for 5G Networks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :108–112.
The introduction of the study primarily emphasises the significance of utilising block chain technologies with the possibility of privacy and security benefits from the 5G Network. One may state that the study’s primary focus is on all the advantages of adopting block chain technology to safeguard everyone’s access to crucial data by utilizing intelligent contracts to enhance the 5G network security model on information security operations.Our literature evaluation for the study focuses primarily on the advantages advantages of utilizing block chain technology advance data security and privacy, as well as their development and growth. The whole study paper has covered both the benefits and drawbacks of employing the block chain technology. The literature study part of this research article has, on the contrary hand, also studied several approaches and tactics for using the blockchain technology facilities. To fully understand the circumstances in this specific case, a poll was undertaken. It was possible for the researchers to get some real-world data in this specific situation by conducting a survey with 51 randomly selected participants.
2023-01-20
Liang, Xiao, An, Ningyu, Li, Da, Zhang, Qiang, Wang, Ruimiao.  2022.  A Blockchain and ABAC Based Data Access Control Scheme in Smart Grid. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :52—55.
In the smart grid, the sharing of power data among various energy entities can make the data play a higher value. However, there may be unauthorized access while sharing data, which makes many entities unwilling to share their data to prevent data leakage. Based on blockchain and ABAC (Attribute-based Access Control) technology, this paper proposes an access control scheme, so that users can achieve fine-grained access control of their data when sharing them. The solution uses smart contract to achieve automated and reliable policy evaluation. IPFS (Interplanetary File System) is used for off-chain distributed storage to share the storage pressure of blockchain and guarantee the reliable storage of data. At the same time, all processes in the system are stored in the blockchain, ensuring the accountability of the system. Finally, the experiment proves the feasibility of the proposed scheme.
2023-01-05
Gupta, Laveesh, Bansal, Manvendra, Meeradevi, Gupta, Muskan, Khaitan, Nishit.  2022.  Blockchain Based Solution to Enhance Drug Supply Chain Management for Smart Pharmaceutical Industry. 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). :330—335.
Counterfeit drugs are an immense threat for the pharmaceutical industry worldwide due to limitations of supply chain. Our proposed solution can overcome many challenges as it will trace and track the drugs while in transit, give transparency along with robust security and will ensure legitimacy across the supply chain. It provides a reliable certification process as well. Fabric architecture is permissioned and private. Hyperledger is a preferred framework over Ethereum because it makes use of features like modular design, high efficiency, quality code and open-source which makes it more suitable for B2B applications with no requirement of cryptocurrency in Hyperledger Fabric. QR generation and scanning are provided as a functionality in the application instead of bar code for its easy accessibility to make it more secure and reliable. The objective of our solution is to provide substantial solutions to the supply chain stakeholders in record maintenance, drug transit monitoring and vendor side verification.
Bansal, Lakshya, Chaurasia, Shefali, Sabharwal, Munish, Vij, Mohit.  2022.  Blockchain Integration with end-to-end traceability in the Food Supply Chain. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1152—1156.
Food supply chain is a complex but necessary food production arrangement needed by the global community to maintain sustainability and food security. For the past few years, entities being a part of the food processing system have usually taken food supply chain for granted, they forget that just one disturbance in the chain can lead to poisoning, scarcity, or increased prices. This continually affects the vulnerable among society, including impoverished individuals and small restaurants/grocers. The food supply chain has been expanded across the globe involving many more entities, making the supply chain longer and more problematic making the traditional logistics pattern unable to match the expectations of customers. Food supply chains involve many challenges like lack of traceability and communication, supply of fraudulent food products and failure in monitoring warehouses. Therefore there is a need for a system that ensures authentic information about the product, a reliable trading mechanism. In this paper, we have proposed a comprehensive solution to make the supply chain consumer centric by using Blockchain. Blockchain technology in the food industry applies in a mindful and holistic manner to verify and certify the quality of food products by presenting authentic information about the products from the initial stages. The problem formulation, simulation and performance analysis are also discussed in this research work.
2023-06-29
Habeeb, Adeeba, Shukla, Vinod Kumar, Dubey, Suchi, Anwar, Shaista.  2022.  Blockchain Technology in Digital Certificate Authentication. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
The paper presents the concept of the association of digital signature technology with the currently trending blockchain technology for providing a mechanism which would detect any dubious data and store it in a place where it could be secure for the long term. The features of blockchain technology perfectly complement the requirements of the educational fields of today's world. The growing trend of digital certificate usage makes it easier for a dubious certificate to existing, among the others hampering the integrity of professional life. Association of hash key and a time stamp with a digital document would ensure that a third person does not corrupt the following certificate. The blockchain ensures that after verification, nobody else misuses the data uploaded and keeps it safe for a long time. The information from the blockchain can be retrieved at any moment by the user using the unique id associated with every user.
2023-08-25
Hassan, Muhammad, Pesavento, Davide, Benmohamed, Lotfi.  2022.  Blockchain-Based Decentralized Authentication for Information-Centric 5G Networks. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :299–302.
The 5G research community is increasingly leveraging the innovative features offered by Information Centric Networking (ICN). However, ICN’s fundamental features, such as in-network caching, make access control enforcement more challenging in an ICN-based 5G deployment. To address this shortcoming, we propose a Blockchain-based Decentralized Authentication Protocol (BDAP) which enables efficient and secure mobile user authentication in an ICN-based 5G network. We show that BDAP is robust against a variety of attacks to which mobile networks and blockchains are particularly vulnerable. Moreover, a preliminary performance analysis suggests that BDAP can reduce the authentication delay compared to the standard 5G authentication protocols.
ISSN: 0742-1303
2023-08-17
Dąbrowski, Marcin, Pacyna, Piotr.  2022.  Blockchain-based identity dicovery between heterogenous identity management systems. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :131—137.
Identity Management Systems (IdMS) have seemingly evolved in recent years, both in terms of modelling approach and in terms of used technology. The early centralized, later federated and user-centric Identity Management (IdM) was finally replaced by Self-Sovereign Identity (SSI). Solutions based on Distributed Ledger Technology (DLT) appeared, with prominent examples of uPort, Sovrin or ShoCard. In effect, users got more freedom in creation and management of their identities. IdM systems became more distributed, too. However, in the area of interoperability, dynamic and ad-hoc identity management there has been almost no significant progress. Quest for the best IdM system which will be used by all entities and organizations is deemed to fail. The environment of IdM systems is, and in the near future will still be, heterogenous. Therefore a person will have to manage her or his identities in multiple IdM systems. In this article authors argument that future-proof IdM systems should be able to interoperate with each other dynamically, i.e. be able to discover existence of different identities of a person across multiple IdM systems, dynamically build trust relations and be able to translate identity assertions and claims across various IdM domains. Finally, authors introduce identity relationship model and corresponding identity discovery algorithm, propose IdMS-agnostic identity discovery service design and its implementation with use of Ethereum and Smart Contracts.
2023-09-07
Wanigasooriya, C. S., Gunasekara, A. D. A. I., Kottegoda, K. G. K. G..  2022.  Blockchain-based Intellectual Property Management Using Smart Contracts. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
Smart contracts are an attractive aspect of blockchain technology. A smart contract is a piece of executable code that runs on top of the blockchain and is used to facilitate, execute, and enforce agreements between untrustworthy parties without the need for a third party. This paper offers a review of the literature on smart contract applications in intellectual property management. The goal is to look at technology advancements and smart contract deployment in this area. The theoretical foundation of many papers published in recent years is used as a source of theoretical and implementation research for this purpose. According to the literature review we conducted, smart contracts function automatically, control, or document legally significant events and activities in line with the contract agreement's terms. This is a relatively new technology that is projected to deliver solutions for trust, security, and transparency across a variety of areas. An exploratory strategy was used to perform this literature review.
2023-04-27
Ahmad, Ashar, Saad, Muhammad, Al Ghamdi, Mohammed, Nyang, DaeHun, Mohaisen, David.  2022.  BlockTrail: A Service for Secure and Transparent Blockchain-Driven Audit Trails. IEEE Systems Journal. 16:1367–1378.
Audit trails are critical components in enterprise business applications, typically used for storing, tracking, and auditing data. Entities in the audit trail applications have weak trust boundaries, which expose them to various security risks and attacks. To harden the security and develop secure by design applications, blockchain technology has been recently introduced in the audit trails. Blockchains take a consensus-driven clean slate approach to equip audit trails with secure and transparent data processing, without a trusted intermediary. On a downside, blockchains significantly increase the space-time complexity of the audit trails, leading to high storage costs and low transaction throughput. In this article, we introduce BlockTrail, a novel blockchain architecture that fragments the legacy blockchain systems into layers of codependent hierarchies, thereby reducing the space-time complexity and increasing the throughput. BlockTrail is prototyped on the “practical Byzantine fault tolerance” protocol with a custom-built blockchain. Experiments with BlockTrail show that compared to the conventional schemes, BlockTrail is secure and efficient, with low storage footprint.
Conference Name: IEEE Systems Journal