Biblio

Found 4288 results

Filters: Keyword is security  [Clear All Filters]
2023-05-19
Iv, James K. Howes, Georgiou, Marios, Malozemoff, Alex J., Shrimpton, Thomas.  2022.  Security Foundations for Application-Based Covert Communication Channels. 2022 IEEE Symposium on Security and Privacy (SP). :1971—1986.
We introduce the notion of an application-based covert channel—or ABCC—which provides a formal syntax for describing covert channels that tunnel messages through existing protocols. Our syntax captures many recent systems, including DeltaShaper (PETS 2017) and Protozoa (CCS 2020). We also define what it means for an ABCC to be secure against a passive eavesdropper, and prove that suitable abstractions of existing censorship circumvention systems satisfy our security notion. In doing so, we define a number of important non-cryptographic security assumptions that are often made implicitly in prior work. We believe our formalisms may be useful to censorship circumvention developers for reasoning about the security of their systems and the associated security assumptions required.
2023-01-06
Tabak, Z., Keko, H., Sučić, S..  2022.  Semantic data integration in upgrading hydro power plants cyber security. 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). :50—54.
In the recent years, we have witnessed quite notable cyber-attacks targeting industrial automation control systems. Upgrading their cyber security is a challenge, not only due to long equipment lifetimes and legacy protocols originally designed to run in air-gapped networks. Even where multiple data sources are available and collection established, data interpretation usable across the different data sources remains a challenge. A modern hydro power plant contains the data sources that range from the classical distributed control systems to newer IoT- based data sources, embedded directly within the plant equipment and deeply integrated in the process. Even abundant collected data does not solve the security problems by itself. The interpretation of data semantics is limited as the data is effectively siloed. In this paper, the relevance of semantic integration of diverse data sources is presented in the context of a hydro power plant. The proposed semantic integration would increase the data interoperability, unlocking the data siloes and thus allowing ingestion of complementary data sources. The principal target of the data interoperability is to support the data-enhanced cyber security in an operational hydro power plant context. Furthermore, the opening of the data siloes would enable additional usage of the existing data sources in a structured semantically enriched form.
2023-02-03
Doshi, Om B., Bendale, Hitesh N., Chavan, Aarti M., More, Shraddha S..  2022.  A Smart Door Lock Security System using Internet of Things. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1457–1463.
Security is a key concern across the world, and it has been a common thread for all critical sectors. Nowadays, it may be stated that security is a backbone that is absolutely necessary for personal safety. The most important requirements of security systems for individuals are protection against theft and trespassing. CCTV cameras are often employed for security purposes. The biggest disadvantage of CCTV cameras is their high cost and the need for a trustworthy individual to monitor them. As a result, a solution that is both easy and cost-effective, as well as secure has been devised. The smart door lock is built on Raspberry Pi technology, and it works by capturing a picture through the Pi Camera module, detecting a visitor's face, and then allowing them to enter. Local binary pattern approach is used for Face recognition. Remote picture viewing, notification, on mobile device are all possible with an IOT based application. The proposed system may be installed at front doors, lockers, offices, and other locations where security is required. The proposed system has an accuracy of 89%, with an average processing time is 20 seconds for the overall process.
2022-12-20
Lin, Xuanwei, Dong, Chen, Liu, Ximeng, Zhang, Yuanyuan.  2022.  SPA: An Efficient Adversarial Attack on Spiking Neural Networks using Spike Probabilistic. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
With the future 6G era, spiking neural networks (SNNs) can be powerful processing tools in various areas due to their strong artificial intelligence (AI) processing capabilities, such as biometric recognition, AI robotics, autonomous drive, and healthcare. However, within Cyber Physical System (CPS), SNNs are surprisingly vulnerable to adversarial examples generated by benign samples with human-imperceptible noise, this will lead to serious consequences such as face recognition anomalies, autonomous drive-out of control, and wrong medical diagnosis. Only by fully understanding the principles of adversarial attacks with adversarial samples can we defend against them. Nowadays, most existing adversarial attacks result in a severe accuracy degradation to trained SNNs. Still, the critical issue is that they only generate adversarial samples by randomly adding, deleting, and flipping spike trains, making them easy to identify by filters, even by human eyes. Besides, the attack performance and speed also can be improved further. Hence, Spike Probabilistic Attack (SPA) is presented in this paper and aims to generate adversarial samples with more minor perturbations, greater model accuracy degradation, and faster iteration. SPA uses Poisson coding to generate spikes as probabilities, directly converting input data into spikes for faster speed and generating uniformly distributed perturbation for better attack performance. Moreover, an objective function is constructed for minor perturbations and keeping attack success rate, which speeds up the convergence by adjusting parameters. Both white-box and black-box settings are conducted to evaluate the merits of SPA. Experimental results show the model's accuracy under white-box attack decreases by 9.2S% 31.1S% better than others, and average success rates are 74.87% under the black-box setting. The experimental results indicate that SPA has better attack performance than other existing attacks in the white-box and better transferability performance in the black-box setting,
2023-05-30
Wang, Xuyang, Hu, Aiqun, Huang, Yongming, Fan, Xiangning.  2022.  The spatial cross-correlation of received voltage envelopes under non-line-of-sight. 2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE). :303—308.
Physical-layer key (PLK) generation scheme is a new key generation scheme based on wireless channel reciprocity. However, the security of physical layer keys still lacks sufficient theoretical support in the presence of eavesdropping attacks until now, which affects the promotion in practical applications. By analyzing the propagation mode of multipath signals under non-line-of-sight (nLoS), an improved spatial cross-correlation model is constructed, where the spatial cross-correlation is between eavesdropping channel and legitimate channel. Results show that compared with the multipath and obstacle distribution of the channel, the azimuth and distance between the eavesdropper and the eavesdropped user have a greater impact on the cross-correlation.
2022-12-20
Şimşek, Merve Melis, Ergun, Tamer, Temuçin, Hüseyin.  2022.  SSL Test Suite: SSL Certificate Test Public Key Infrastructure. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
Today, many internet-based applications, especially e-commerce and banking applications, require the transfer of personal data and sensitive data such as credit card information, and in this process, all operations are carried out over the Internet. Users frequently perform these transactions, which require high security, on web sites they access via web browsers. This makes the browser one of the most basic software on the Internet. The security of the communication between the user and the website is provided with SSL certificates, which is used for server authentication. Certificates issued by Certificate Authorities (CA) that have passed international audits must meet certain conditions. The criteria for the issuance of certificates are defined in the Baseline Requirements (BR) document published by the Certificate Authority/Browser (CA/B) Forum, which is accepted as the authority in the WEB Public Key Infrastructure (WEB PKI) ecosystem. Issuing the certificates in accordance with the defined criteria is not sufficient on its own to establish a secure SSL connection. In order to ensure a secure connection and confirm the identity of the website, the certificate validation task falls to the web browsers with which users interact the most. In this study, a comprehensive SSL certificate public key infrastructure (SSL Test Suite) was established to test the behavior of web browsers against certificates that do not comply with BR requirements. With the designed test suite, it is aimed to analyze the certificate validation behaviors of web browsers effectively.
ISSN: 2165-0608
2023-02-17
Sharma, Pradeep Kumar, Kumar, Brijesh, Tyagi, S.S.  2022.  STADS: Security Threats Assessment and Diagnostic System in Software Defined Networking (SDN). 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:744–751.
Since the advent of the Software Defined Networking (SDN) in 2011 and formation of Open Networking Foundation (ONF), SDN inspired projects have emerged in various fields of computer networks. Almost all the networking organizations are working on their products to be supported by SDN concept e.g. openflow. SDN has provided a great flexibility and agility in the networks by application specific control functions with centralized controller, but it does not provide security guarantees for security vulnerabilities inside applications, data plane and controller platform. As SDN can also use third party applications, an infected application can be distributed in the network and SDN based systems may be easily collapsed. In this paper, a security threats assessment model has been presented which highlights the critical areas with security requirements in SDN. Based on threat assessment model a proposed Security Threats Assessment and Diagnostic System (STADS) is presented for establishing a reliable SDN framework. The proposed STADS detects and diagnose various threats based on specified policy mechanism when different components of SDN communicate with controller to fulfil network requirements. Mininet network emulator with Ryu controller has been used for implementation and analysis.
Ruaro, Nicola, Pagani, Fabio, Ortolani, Stefano, Kruegel, Christopher, Vigna, Giovanni.  2022.  SYMBEXCEL: Automated Analysis and Understanding of Malicious Excel 4.0 Macros. 2022 IEEE Symposium on Security and Privacy (SP). :1066–1081.
Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.
ISSN: 2375-1207
2023-03-17
Dhasade, Akash, Dresevic, Nevena, Kermarrec, Anne-Marie, Pires, Rafael.  2022.  TEE-based decentralized recommender systems: The raw data sharing redemption. 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :447–458.
Recommenders are central in many applications today. The most effective recommendation schemes, such as those based on collaborative filtering (CF), exploit similarities between user profiles to make recommendations, but potentially expose private data. Federated learning and decentralized learning systems address this by letting the data stay on user's machines to preserve privacy: each user performs the training on local data and only the model parameters are shared. However, sharing the model parameters across the network may still yield privacy breaches. In this paper, we present Rex, the first enclave-based decentralized CF recommender. Rex exploits Trusted execution environments (TEE), such as Intel software guard extensions (SGX), that provide shielded environments within the processor to improve convergence while preserving privacy. Firstly, Rex enables raw data sharing, which ultimately speeds up convergence and reduces the network load. Secondly, Rex fully preserves privacy. We analyze the impact of raw data sharing in both deep neural network (DNN) and matrix factorization (MF) recommenders and showcase the benefits of trusted environments in a full-fledged implementation of Rex. Our experimental results demonstrate that through raw data sharing, Rex significantly decreases the training time by 18.3 x and the network load by 2 orders of magnitude over standard decentralized approaches that share only parameters, while fully protecting privacy by leveraging trustworthy hardware enclaves with very little overhead.
ISSN: 1530-2075
2022-12-20
Van Goethem, Tom, Joosen, Wouter.  2022.  Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW). :20–30.
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
ISSN: 2770-8411
2023-04-28
Tashman, Deemah H., Hamouda, Walaa.  2022.  Towards Improving the Security of Cognitive Radio Networks-Based Energy Harvesting. ICC 2022 - IEEE International Conference on Communications. :3436–3441.
In this paper, physical-layer security (PLS) of an underlay cognitive radio network (CRN) operating over cascaded Rayleigh fading channels is examined. In this scenario, a secondary user (SU) transmitter communicates with a SU receiver through a cascaded Rayleigh fading channel while being exposed to eavesdroppers. By harvesting energy from the SU transmitter, a cooperating jammer attempts to ensure the privacy of the transmitted communications. That is, this harvested energy is utilized to generate and spread jamming signals to baffle the information interception at eavesdroppers. Additionally, two scenarios are examined depending on the manner in which eavesdroppers intercept messages; colluding and non-colluding eavesdroppers. These scenarios are compared to determine which poses the greatest risk to the network. Furthermore, the channel cascade effect on security is investigated. Distances between users and the density of non-colluding eavesdroppers are also investigated. Moreover, cooperative jamming-based energy harvesting effectiveness is demonstrated.
2023-05-19
Dazhi, Michael N., Al-Hraishawi, Hayder, Shankar, Mysore R Bhavani, Chatzinotas, Symeon.  2022.  Uplink Capacity Optimization for High Throughput Satellites using SDN and Multi-Orbital Dual Connectivity. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :544—549.
Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications, it is not been widely explored in satellite systems. In this paper, Dual Connectivity is implemented in a multi-orbital satellite network, where a network model is developed by employing the diversity gains from Dual Connectivity and Carrier Aggregation for the enhancement of satellite uplink capacity. An introduction of software defined network controller is performed at the network layer coupled with a carefully designed hybrid resource allocation algorithm which is implemented strategically. The algorithm performs optimum dynamic flow control and traffic steering by considering the availability of resources and the channel propagation information of the orbital links to arrive at a resource allocation pattern suitable in enhancing uplink system performance. Simulation results are shown to evaluate the achievable gains in throughput and latency; in addition we provide useful insight in the design of multi-orbital satellite networks with implementable scheduler design.
2023-06-09
Zhao, Junjie, Xu, Bingfeng, Chen, Xinkai, Wang, Bo, He, Gaofeng.  2022.  Analysis Method of Security Critical Components of Industrial Cyber Physical System based on SysML. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :270—275.
To solve the problem of an excessive number of component vulnerabilities and limited defense resources in industrial cyber physical systems, a method for analyzing security critical components of system is proposed. Firstly, the components and vulnerability information in the system are modeled based on SysML block definition diagram. Secondly, as SysML block definition diagram is challenging to support direct analysis, a block security dependency graph model is proposed. On this basis, the transformation rules from SysML block definition graph to block security dependency graph are established according to the structure of block definition graph and its vulnerability information. Then, the calculation method of component security importance is proposed, and a security critical component analysis tool is designed and implemented. Finally, an example of a Drone system is given to illustrate the effectiveness of the proposed method. The application of this method can provide theoretical and technical support for selecting key defense components in the industrial cyber physical system.
2023-02-17
SAHBI, Amina, JAIDI, Faouzi, BOUHOULA, Adel.  2022.  Artificial Intelligence for SDN Security: Analysis, Challenges and Approach Proposal. 2022 15th International Conference on Security of Information and Networks (SIN). :01–07.
The dynamic state of networks presents a challenge for the deployment of distributed applications and protocols. Ad-hoc schedules in the updating phase might lead to a lot of ambiguity and issues. By separating the control and data planes and centralizing control, Software Defined Networking (SDN) offers novel opportunities and remedies for these issues. However, software-based centralized architecture for distributed environments introduces significant challenges. Security is a main and crucial issue in SDN. This paper presents a deep study of the state-of-the-art of security challenges and solutions for the SDN paradigm. The conducted study helped us to propose a dynamic approach to efficiently detect different security violations and incidents caused by network updates including forwarding loop, forwarding black hole, link congestion, network policy violation, etc. Our solution relies on an intelligent approach based on the use of Machine Learning and Artificial Intelligence Algorithms.
2023-07-21
Nazih, Ossama, Benamar, Nabil, Lamaazi, Hanane, Chaoui, Habiba.  2022.  Challenges and future directions for security and privacy in vehicular fog computing. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :693—699.
Cooperative Intelligent Transportation System (CITS) has been introduced recently to increase road safety, traffic efficiency, and to enable various infotainment and comfort applications and services. To this end, a bunch technologies have been deployed to maintain and promote ITS. In essence, ITS is composed of vehicles, roadside infrastructure, and the environment that includes pedestrians, and other entities. Recently, several solutions were suggested to handle with the challenges faced by the vehicular networks (VN) using future internet architectures. One of the promising solutions proposed recently is Vehicular Fog computing (VFC), an attractive solution that supports sensitive service requests considering factors such as latency, mobility, localization, and scalability. VFC also provides a virtual platform for real-time big data analytic using servers or vehicles as a fog infrastructure. This paper surveys the general fog computing (FC) concept, the VFC architectures, and the key characteristics of several intelligent computing applications. We mainly focus on trust and security challenges in VFC deployment and real-time BD analytic in vehicular environment. We identify the faced challenges and future research directions in VFC and we highlight the research gap that can be exploited by researchers and vehicular manufactures while designing a new secure VFC architecture.
2023-08-18
Doraswamy, B., Krishna, K. Lokesh.  2022.  A Deep Learning Approach for Anomaly Detection in Industrial Control Systems. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :442—448.
An Industrial Control System (ICS) is essential in monitoring and controlling critical infrastructures such as safety and security. Internet of Things (IoT) in ICSs allows cyber-criminals to utilize systems' vulnerabilities towards deploying cyber-attacks. To distinguish risks and keep an eye on malicious activity in networking systems, An Intrusion Detection System (IDS) is essential. IDS shall be used by system admins to identify unwanted accesses by attackers in various industries. It is now a necessary component of each organization's security governance. The main objective of this intended work is to establish a deep learning-depended intrusion detection system that can quickly identify intrusions and other unwanted behaviors that have the potential to interfere with networking systems. The work in this paper uses One Hot encoder for preprocessing and the Auto encoder for feature extraction. On KDD99 CUP, a data - set for network intruding, we categorize the normal and abnormal data applying a Deep Convolutional Neural Network (DCNN), a deep learning-based methodology. The experimental findings demonstrate that, in comparison with SVM linear Kernel model, SVM RBF Kernel model, the suggested deep learning model operates better.
2023-05-26
Basan, Elena, Mikhailova, Vasilisa, Shulika, Maria.  2022.  Exploring Security Testing Methods for Cyber-Physical Systems. 2022 International Siberian Conference on Control and Communications (SIBCON). :1—7.
A methodology for studying the level of security for various types of CPS through the analysis of the consequences was developed during the research process. An analysis of the architecture of cyber-physical systems was carried out, vulnerabilities and threats of specific devices were identified, a list of possible information attacks and their consequences after the exploitation of vulnerabilities was identified. The object of research is models of cyber-physical systems, including IoT devices, microcomputers, various sensors that function through communication channels, organized by cyber-physical objects. The main subjects of this investigation are methods and means of security testing of cyber-physical systems (CPS). The main objective of this investigation is to update the problem of security in cyber-physical systems, to analyze the security of these systems. In practice, the testing methodology for the cyber-physical system “Smart Factory” was implemented, which simulates the operation of a real CPS, with different types of links and protocols used.
2023-07-21
Huang, Xiaoge, Yin, Hongbo, Wang, Yongsheng, Chen, Qianbin, Zhang, Jie.  2022.  Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
2023-02-17
Lychko, Sergey, Tsoy, Tatyana, Li, Hongbing, Martínez-García, Edgar A., Magid, Evgeni.  2022.  ROS Network Security for a Swing Doors Automation in a Robotized Hospital. 2022 International Siberian Conference on Control and Communications (SIBCON). :1–6.
Internet of Medical Things (IoMT) is a rapidly growing branch of IoT (Internet of Things), which requires special treatment to cyber security due to confidentiality of healthcare data and patient health threat. Healthcare data and automated medical devices might become vulnerable targets of malicious cyber-attacks. While a large number of robotic applications, including medical and healthcare, employ robot operating system (ROS) as their backbone, not enough attention is paid for ROS security. The paper discusses a security of ROS-based swing doors automation in the context of a robotic hospital framework, which should be protected from cyber-attacks.
ISSN: 2380-6516
2023-04-28
López, Hiram H., Matthews, Gretchen L., Valvo, Daniel.  2022.  Secure MatDot codes: a secure, distributed matrix multiplication scheme. 2022 IEEE Information Theory Workshop (ITW). :149–154.
This paper presents secure MatDot codes, a family of evaluation codes that support secure distributed matrix multiplication via a careful selection of evaluation points that exploit the properties of the dual code. We show that the secure MatDot codes provide security against the user by using locally recoverable codes. These new codes complement the recently studied discrete Fourier transform codes for distributed matrix multiplication schemes that also provide security against the user. There are scenarios where the associated costs are the same for both families and instances where the secure MatDot codes offer a lower cost. In addition, the secure MatDot code provides an alternative way to handle the matrix multiplication by identifying the fastest servers in advance. In this way, it can determine a product using fewer servers, specified in advance, than the MatDot codes which achieve the optimal recovery threshold for distributed matrix multiplication schemes.
2023-06-09
Béatrix-May, Balaban, Ştefan, Sacală Ioan, Alina-Claudia, Petrescu-Niţă, Radu, Simen.  2022.  Security issues in MCPS when using Wireless Sensor Networks. 2022 E-Health and Bioengineering Conference (EHB). :1—4.
Considering the evolution of technology, the need to secure data is growing fast. When we turn our attention to the healthcare field, securing data and assuring privacy are critical conditions that must be accomplished. The information is sensitive and confidential, and the exchange rate is very fast. Over the years, the healthcare domain has gradually seen a growth of interest regarding the interconnectivity of different processes to optimize and improve the services that are provided. Therefore, we need intelligent complex systems that can collect and transport sensitive data in a secure way. These systems are called cyber-physical systems. In healthcare domain, these complex systems are named medical cyber physical systems. The paper presents a brief description of the above-mentioned intelligent systems. Then, we focus on wireless sensor networks and the issues and challenges that occur in securing sensitive data and what improvements we propose on this subject. In this paper we tried to provide a detailed overview about cyber-physical systems, medical cyber-physical systems, wireless sensor networks and the security issues that can appear.
2023-02-17
Chanumolu, Kiran Kumar, Ramachandran, Nandhakumar.  2022.  A Study on Various Intrusion Detection Models for Network Coding Enabled Mobile Small Cells. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :963–970.
Mobile small cells that are enabled with Network Coding (NC) are seen as a potentially useful technique for Fifth Generation (5G) networks, since they can cover an entire city and can be put up on demand anywhere, any time, and on any device. Despite numerous advantages, significant security issues arise as a result of the fact that the NC-enabled mobile small cells are vulnerable to attacks. Intrusions are a severe security threat that exploits the inherent vulnerabilities of NC. In order to make NC-enabled mobile small cells to realize their full potential, it is essential to implement intrusion detection systems. When compared to homomorphic signature or hashing systems, homomorphic message authentication codes (MACs) provide safe network coding techniques with relatively smaller overheads. A number of research studies have been conducted with the goal of developing mobile small cells that are enabled with secure network coding and coming up with integrity protocols that are appropriate for such crowded situations. However, the intermediate nodes alter packets while they are in transit and hence the integrity of the data cannot be confirmed by using MACs and checksums. This research study has analyzed numerous intrusion detection models for NC enabled small cells. This research helps the scholars to get a brief idea about various intrusion detection models.
2023-08-25
Riyanto, Supangkat, Suhono Harso, Iskandar.  2022.  Survey on MAC Protocol of Mobile Ad hoc Network for Tactical Data Link System. 2022 International Conference on Information Technology Systems and Innovation (ICITSI). :134–137.
Tactical Data Link (TDL) is one of the important elements in Network Centric Warfare (NCW). TDL provides the means for rapid exchange of tactical information between air, ground, sea units and command centers. In military operations, TDL has high demands for resilience, responsiveness, reliability, availability and security. MANET has characteristics that are suitable for the combat environment, namely the ability to self-form and self-healing so that this network may be applied to the TDL system. To produce high performance in MANET adapted for TDL system, an efficient MAC Protocol method is needed. This paper provides a survey of several MAC Protocol methods on a tactical MANET. In this paper also suggests some improvements to the MANET MAC protocol to improve TDL system performance.
2023-08-18
Chirupphapa, Pawissakan, Hossain, Md Delwar, Esaki, Hiroshi, Ochiai, Hideya.  2022.  Unsupervised Anomaly Detection in RS-485 Traffic using Autoencoders with Unobtrusive Measurement. 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). :17—23.
Remotely connected devices have been adopted in several industrial control systems (ICS) recently due to the advancement in the Industrial Internet of Things (IIoT). This led to new security vulnerabilities because of the expansion of the attack surface. Moreover, cybersecurity incidents in critical infrastructures are increasing. In the ICS, RS-485 cables are widely used in its network for serial communication between each component. However, almost 30 years ago, most of the industrial network protocols implemented over RS-485 such as Modbus were designed without security features. Therefore, anomaly detection is required in industrial control networks to secure communication in the systems. The goal of this paper is to study unsupervised anomaly detection in RS-485 traffic using autoencoders. Five threat scenarios in the physical layer of the industrial control network are proposed. The novelty of our method is that RS-485 traffic is collected indirectly by an analog-to-digital converter. In the experiments, multilayer perceptron (MLP), 1D convolutional, Long Short-Term Memory (LSTM) autoencoders are trained to detect anomalies. The results show that three autoencoders effectively detect anomalous traffic with F1-scores of 0.963, 0.949, and 0.928 respectively. Due to the indirect traffic collection, our method can be practically applied in the industrial control network.
2023-02-17
Morón, Paola Torrico, Salimi, Salma, Queralta, Jorge Peña, Westerlund, Tomi.  2022.  UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems. 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE). :1–8.
Systems for relative localization in multi-robot systems based on ultra-wideband (UWB) ranging have recently emerged as robust solutions for GNSS-denied environments. Scalability remains one of the key challenges, particularly in adhoc deployments. Recent solutions include dynamic allocation of active and passive localization modes for different robots or nodes in the system. with larger-scale systems becoming more distributed, key research questions arise in the areas of security and trustability of such localization systems. This paper studies the potential integration of collaborative-decision making processes with distributed ledger technologies. Specifically, we investigate the design and implementation of a methodology for running an UWB role allocation algorithm within smart contracts in a blockchain. In previous works, we have separately studied the integration of ROS2 with the Hyperledger Fabric blockchain, and introduced a new algorithm for scalable UWB-based localization. In this paper, we extend these works by (i) running experiments with larger number of mobile robots switching between different spatial configurations and (ii) integrating the dynamic UWB role allocation algorithm into Fabric smart contracts for distributed decision-making in a system of multiple mobile robots. This enables us to deliver the same functionality within a secure and trustable process, with enhanced identity and data access management. Our results show the effectiveness of the UWB role allocation for continuously varying spatial formations of six autonomous mobile robots, while demonstrating a low impact on latency and computational resources of adding the blockchain layer that does not affect the localization process.