Biblio

Found 151 results

Filters: Keyword is security metrics  [Clear All Filters]
2020-03-09
Onwubiko, Cyril, Onwubiko, Austine.  2019.  Cyber KPI for Return on Security Investment. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Cyber security return on investment (RoI) or return on security investment (RoSI) is extremely challenging to measure. This is partly because it is difficult to measure the actual cost of a cyber security incident or cyber security proceeds. This is further complicated by the fact that there are no consensus metrics that every organisation agrees to, and even among cyber subject matter experts, there are no set of agreed parameters or metric upon which cyber security benefits or rewards can be assessed against. One approach to demonstrating return on security investment is by producing cyber security reports of certain key performance indicators (KPI) and metrics, such as number of cyber incidents detected, number of cyber-attacks or terrorist attacks that were foiled, or ongoing monitoring capabilities. These are some of the demonstratable and empirical metrics that could be used to measure RoSI. In this abstract paper, we investigate some of the cyber KPIs and metrics to be considered for cyber dashboard and reporting for RoSI.

2019-10-23
Alshawish, Ali, Spielvogel, Korbinian, de Meer, Hermann.  2019.  A Model-Based Time-to-Compromise Estimator to Assess the Security Posture of Vulnerable Networks. 2019 International Conference on Networked Systems (NetSys). :1-3.

Several operational and economic factors impact the patching decisions of critical infrastructures. The constraints imposed by such factors could prevent organizations from fully remedying all of the vulnerabilities that expose their (critical) assets to risk. Therefore, an involved decision maker (e.g. security officer) has to strategically decide on the allocation of possible remediation efforts towards minimizing the inherent security risk. This, however, involves the use of comparative judgments to prioritize risks and remediation actions. Throughout this work, the security risk is quantified using the security metric Time-To-Compromise (TTC). Our main contribution is to provide a generic TTC estimator to comparatively assess the security posture of computer networks taking into account interdependencies between the network components, different adversary skill levels, and characteristics of (known and zero-day) vulnerabilities. The presented estimator relies on a stochastic TTC model and Monte Carlo simulation (MCS) techniques to account for the input data variability and inherent prediction uncertainties.

2020-11-02
Aman, W., Khan, F..  2019.  Ontology-based Dynamic and Context-aware Security Assessment Automation for Critical Applications. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :644–647.

Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.

2020-08-28
Jia, Ziyi, Wu, Chensi, Zhang, Yuqing.  2019.  Research on the Destructive Capability Metrics of Common Network Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1419—1424.

An improved algorithm of the Analytic Hierarchy Process (AHP) is proposed in this paper, which is realized by constructing an improved judgment matrix. Specifically, rough set theory is used in the algorithm to calculate the weight of the network metric data, and then the improved AHP algorithm nine-point systemic is structured, finally, an improved AHP judgment matrix is constructed. By performing an AHP operation on the improved judgment matrix, the weight of the improved network metric data can be obtained. If only the rough set theory is applied to process the network index data, the objective factors would dominate the whole process. If the improved algorithm of AHP is used to integrate the expert score into the process of measurement, then the combination of subjective factors and objective factors can be realized. Based on the aforementioned theory, a new network attack metrics system is proposed in this paper, which uses a metric structure based on "attack type-attack attribute-attack atomic operation-attack metrics", in which the metric process of attack attribute adopts AHP. The metrics of the system are comprehensive, given their judgment of frequent attacks is universal. The experiment was verified by an experiment of a common attack Smurf. The experimental results show the effectiveness and applicability of the proposed measurement system.

2020-02-17
Halabi, Talal, Bellaiche, Martine.  2019.  Security Risk-Aware Resource Provisioning Scheme for Cloud Computing Infrastructures. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.

The last decade has witnessed a growing interest in exploiting the advantages of Cloud Computing technology. However, the full migration of services and data to the Cloud is still cautious due to the lack of security assurance. Cloud Service Providers (CSPs)are urged to exert the necessary efforts to boost their reputation and improve their trustworthiness. Nevertheless, the uniform implementation of advanced security solutions across all their data centers is not the ideal solution, since customers' security requirements are usually not monolithic. In this paper, we aim at integrating the Cloud security risk into the process of resource provisioning to increase the security of Cloud data centers. First, we propose a quantitative security risk evaluation approach based on the definition of distinct security metrics and configurations adapted to the Cloud Computing environment. Then, the evaluated security risk levels are incorporated into a resource provisioning model in an InterCloud setting. Finally, we adopt two different metaheuristics approaches from the family of evolutionary computation to solve the security risk-aware resource provisioning problem. Simulations show that our model reduces the security risk within the Cloud infrastructure and demonstrate the efficiency and scalability of proposed solutions.

2020-03-09
Moukahal, Lama, Zulkernine, Mohammad.  2019.  Security Vulnerability Metrics for Connected Vehicles. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :17–23.

Software integration in modern vehicles is continuously expanding. This is due to the fact that vehicle manufacturers are always trying to enhance and add more innovative and competitive features that may rely on complex software functionalities. However, these features come at a cost. They amplify the security vulnerabilities in vehicles and lead to more security issues in today's automobiles. As a result, the need for identifying vulnerable components in a vehicle software system has become crucial. Security experts need to know which components of the vehicle software system can be exploited for attacks and should focus their testing and inspection efforts on it. Nevertheless, it is a challenging and costly task to identify these weak components in a vehicle's system. In this paper, we propose some security vulnerability metrics for connected vehicles that aim to assist software testers during the development life-cycle in order to identify the frail links that put the vehicle at highsecurity risks. Vulnerable function assessment can give software testers a good idea about which components in a connected vehicle need to be prioritized in order to mitigate the risk and hence secure the vehicle. The proposed metrics were applied to OpenPilot - a software that provides Autopilot feature - and has been integrated with 48 different vehicles.. The application shows how the defined metrics can be effectively used to quantitatively measure the vulnerabilities of a vehicle software system.

2020-03-02
Sultana, Kazi Zakia, Chong, Tai-Yin.  2019.  A Proposed Approach to Build an Automated Software Security Assessment Framework using Mined Patterns and Metrics. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :176–181.

Software security is a major concern of the developers who intend to deliver a reliable software. Although there is research that focuses on vulnerability prediction and discovery, there is still a need for building security-specific metrics to measure software security and vulnerability-proneness quantitatively. The existing methods are either based on software metrics (defined on the physical characteristics of code; e.g. complexity or lines of code) which are not security-specific or some generic patterns known as nano-patterns (Java method-level traceable patterns that characterize a Java method or function). Other methods predict vulnerabilities using text mining approaches or graph algorithms which perform poorly in cross-project validation and fail to be a generalized prediction model for any system. In this paper, we envision to construct an automated framework that will assist developers to assess the security level of their code and guide them towards developing secure code. To accomplish this goal, we aim to refine and redefine the existing nano-patterns and software metrics to make them more security-centric so that they can be used for measuring the software security level of a source code (either file or function) with higher accuracy. In this paper, we present our visionary approach through a series of three consecutive studies where we (1) will study the challenges of the current software metrics and nano-patterns in vulnerability prediction, (2) will redefine and characterize the nano-patterns and software metrics so that they can capture security-specific properties of code and measure the security level quantitatively, and finally (3) will implement an automated framework for the developers to automatically extract the values of all the patterns and metrics for the given code segment and then flag the estimated security level as a feedback based on our research results. We accomplished some preliminary experiments and presented the results which indicate that our vision can be practically implemented and will have valuable implications in the community of software security.

2020-08-28
Eom, Taehoon, Hong, Jin Bum, An, SeongMo, Park, Jong Sou, Kim, Dong Seong.  2019.  Security and Performance Modeling and Optimization for Software Defined Networking. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :610—617.

Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.

2020-10-06
Akbarzadeh, Aida, Pandey, Pankaj, Katsikas, Sokratis.  2019.  Cyber-Physical Interdependencies in Power Plant Systems: A Review of Cyber Security Risks. 2019 IEEE Conference on Information and Communication Technology. :1—6.

Realizing the importance of the concept of “smart city” and its impact on the quality of life, many infrastructures, such as power plants, began their digital transformation process by leveraging modern computing and advanced communication technologies. Unfortunately, by increasing the number of connections, power plants become more and more vulnerable and also an attractive target for cyber-physical attacks. The analysis of interdependencies among system components reveals interdependent connections, and facilitates the identification of those among them that are in need of special protection. In this paper, we review the recent literature which utilizes graph-based models and network-based models to study these interdependencies. A comprehensive overview, based on the main features of the systems including communication direction, control parameters, research target, scalability, security and safety, is presented. We also assess the computational complexity associated with the approaches presented in the reviewed papers, and we use this metric to assess the scalability of the approaches.

2020-03-09
Singh, Moirangthem Marjit, Mandal, Jyotsna Kumar.  2019.  Gray Hole Attack Analysis in AODV Based Mobile Adhoc Network with Reliability Metric. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :565–569.

The increasing demand and the use of mobile ad hoc network (MANET) in recent days have attracted the attention of researchers towards pursuing active research work largely related to security attacks in MANET. Gray hole attack is one of the most common security attacks observed in MANET. The paper focuses on gray hole attack analysis in Ad hoc on demand distance vector(AODV) routing protocol based MANET with reliability as a metric. Simulation is performed using ns-2.35 simulation software under varying number of network nodes and varying number of gray hole nodes. Results of simulation indicates that increasing the number of gray hole node in the MANET will decrease the reliability of MANET.

2020-10-06
Ur-Rehman, Attiq, Gondal, Iqbal, Kamruzzuman, Joarder, Jolfaei, Alireza.  2019.  Vulnerability Modelling for Hybrid IT Systems. 2019 IEEE International Conference on Industrial Technology (ICIT). :1186—1191.

Common vulnerability scoring system (CVSS) is an industry standard that can assess the vulnerability of nodes in traditional computer systems. The metrics computed by CVSS would determine critical nodes and attack paths. However, traditional IT security models would not fit IoT embedded networks due to distinct nature and unique characteristics of IoT systems. This paper analyses the application of CVSS for IoT embedded systems and proposes an improved vulnerability scoring system based on CVSS v3 framework. The proposed framework, named CVSSIoT, is applied to a realistic IT supply chain system and the results are compared with the actual vulnerabilities from the national vulnerability database. The comparison result validates the proposed model. CVSSIoT is not only effective, simple and capable of vulnerability evaluation for traditional IT system, but also exploits unique characteristics of IoT devices.

2020-02-17
Yee, George O. M..  2019.  Designing Good Security Metrics. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:580–585.

This paper begins with an introduction to security metrics, describing the need for security metrics, followed by a discussion of the nature of security metrics, including the challenges found with some security metrics used in the past. The paper then discusses what makes a good security metric and proposes a rigorous step-by-step method that can be applied to design good security metrics, and to test existing security metrics to see if they are good metrics. Application examples are included to illustrate the method.

2020-03-09
Song, Zekun, Wang, Yichen, Zong, Pengyang, Ren, Zhiwei, Qi, Di.  2019.  An Empirical Study of Comparison of Code Metric Aggregation Methods–on Embedded Software. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :114–119.

How to evaluate software reliability based on historical data of embedded software projects is one of the problems we have to face in practical engineering. Therefore, we establish a software reliability evaluation model based on code metrics. This evaluation technique requires the aggregation of software code metrics into project metrics. Statistical value methods, metric distribution methods, and econometric methods are commonly-used aggregation methods. What are the differences between these methods in the software reliability evaluation process, and which methods can improve the accuracy of the reliability assessment model we have established are our concerns. In view of these concerns, we conduct an empirical study on the application of software code metric aggregation methods based on actual projects. We find the distribution of code metrics for the projects under study. Using these distribution laws, we optimize the aggregation method of code metrics and improve the accuracy of the software reliability evaluation model.

2020-10-06
Payne, Josh, Budhraja, Karan, Kundu, Ashish.  2019.  How Secure Is Your IoT Network? 2019 IEEE International Congress on Internet of Things (ICIOT). :181—188.

The proliferation of IoT devices in smart homes, hospitals, and enterprise networks is wide-spread and continuing to increase in a superlinear manner. The question is: how can one assess the security of an IoT network in a holistic manner? In this paper, we have explored two dimensions of security assessment- using vulnerability information and attack vectors of IoT devices and their underlying components (compositional security scores) and using SIEM logs captured from the communications and operations of such devices in a network (dynamic activity metrics). These measures are used to evaluate the security of IoT devices and the overall IoT network, demonstrating the effectiveness of attack circuits as practical tools for computing security metrics (exploitability, impact, and risk to confidentiality, integrity, and availability) of the network. We decided to approach threat modeling using attack graphs. To that end, we propose the notion of attack circuits, which are generated from input/output pairs constructed from CVEs using NLP, and an attack graph composed of these circuits. Our system provides insight into possible attack paths an adversary may utilize based on their exploitability, impact, or overall risk. We have performed experiments on IoT networks to demonstrate the efficacy of the proposed techniques.

Bellini, Emanuele, Caullery, Florian, Gaborit, Philippe, Manzano, Marc, Mateu, Victor.  2019.  Improved Veron Identification and Signature Schemes in the Rank Metric. 2019 IEEE International Symposium on Information Theory (ISIT). :1872—1876.

It is notably challenging to design an efficient and secure signature scheme based on error-correcting codes. An approach to build such signature schemes is to derive it from an identification protocol through the Fiat-Shamir transform. All such protocols based on codes must be run several rounds, since each run of the protocol allows a cheating probability of either 2/3 or 1/2. The resulting signature size is proportional to the number of rounds, thus making the 1/2 cheating probability version more attractive. We present a signature scheme based on double circulant codes in the rank metric, derived from an identification protocol with cheating probability of 2/3. We reduced this probability to almost 1/2 to obtain the smallest signature among code-based signature schemes based on the Fiat-Shamir paradigm, around 22 KBytes for 128 bit security level. Furthermore, among all code-based signature schemes, our proposal has the lowest value of signature plus public key size, and the smallest secret and public key sizes. We provide a security proof in the Random Oracle Model, implementation performances, and a comparison with the parameters of similar signature schemes.

2020-04-13
Verma, Dinesh, Bertino, Elisa, de Mel, Geeth, Melrose, John.  2019.  On the Impact of Generative Policies on Security Metrics. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :104–109.
Policy based Security Management in an accepted practice in the industry, and required to simplify the administrative overhead associated with security management in complex systems. However, the growing dynamicity, complexity and scale of modern systems makes it difficult to write the security policies manually. Using AI, we can generate policies automatically. Security policies generated automatically can reduce the manual burden introduced in defining policies, but their impact on the overall security of a system is unclear. In this paper, we discuss the security metrics that can be associated with a system using generative policies, and provide a simple model to determine the conditions under which generating security policies will be beneficial to improve the security of the system. We also show that for some types of security metrics, a system using generative policies can be considered as equivalent to a system using manually defined policies, and the security metrics of the generative policy based system can be mapped to the security metrics of the manual system and vice-versa.
2020-03-09
López-Vizcaíno, Manuel, Cacheda, Fidel, Novoa, Franciso J., Carneiro, Víctor.  2019.  Metrics and Techniques for Early Detection in Communication Networks. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1–3.

Nowadays, communication networks have a high relevance in any field. Because of this, it is necessary to maintain them working properly and with an adequate security level. In many fields, and in anomaly detection in communication networks in particular, it results really convenient the use of early detection methods. Therefore, adequate metrics must be defined to allow the correct evaluation of methods applied in relation to time delay in the detection. In this thesis the definition of time-aware metrics for early detection anomaly techniques evaluation.

Munaiah, Nuthan, Meneely, Andrew.  2019.  Data-Driven Insights from Vulnerability Discovery Metrics. 2019 IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and 1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE). :1–7.

Software metrics help developers discover and fix mistakes. However, despite promising empirical evidence, vulnerability discovery metrics are seldom relied upon in practice. In prior research, the effectiveness of these metrics has typically been expressed using precision and recall of a prediction model that uses the metrics as explanatory variables. These prediction models, being black boxes, may not be perceived as useful by developers. However, by systematically interpreting the models and metrics, we can provide developers with nuanced insights about factors that have led to security mistakes in the past. In this paper, we present a preliminary approach to using vulnerability discovery metrics to provide insightful feedback to developers as they engineer software. We collected ten metrics (churn, collaboration centrality, complexity, contribution centrality, nesting, known offender, source lines of code, \# inputs, \# outputs, and \# paths) from six open-source projects. We assessed the generalizability of the metrics across two contextual dimensions (application domain and programming language) and between projects within a domain, computed thresholds for the metrics using an unsupervised approach from literature, and assessed the ability of these unsupervised thresholds to classify risk from historical vulnerabilities in the Chromium project. The observations from this study feeds into our ongoing research to automatically aggregate insights from the various analyses to generate natural language feedback on security. We hope that our approach to generate automated feedback will accelerate the adoption of research in vulnerability discovery metrics.

2020-10-06
Petrenko, S. A., Vorobieva, D. E..  2019.  Method of Ensuring Cyber Resilience of Digital Platforms Based on Catastrophe Theory. 2019 XXII International Conference on Soft Computing and Measurements (SCM)). :97—101.

This article presents the valuable experience and practical results of exploratory research by authors on the scientific problem of cyber-resilient (Cyber Resilience) critical information infrastructure in the previously unknown heterogeneous mass cyber attacks of attackers based on similarity invariants. It is essential that the results obtained significantly complement the well-known practices and recommendations of ISO 22301 (https://www.iso.org), MITER PR 15-1334 (www.mitre.org) and NIST SP 800-160 (www.nist.gov) in terms of developing quantitative metrics and cyber resistance measures. This allows you to open and formally present the ultimate law of the effectiveness of ensuring the cyber stability of modern systems of Industry 4.0. in the face of growing security threats.

Godquin, Tanguy, Barbier, Morgan, Gaber, Chrystel, Grimault, Jean-Luc, Bars, Jean-Marie Le.  2019.  Placement optimization of IoT security solutions for edge computing based on graph theory. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.

In this paper, we propose a new method for optimizing the deployment of security solutions within an IoT network. Our approach uses dominating sets and centrality metrics to propose an IoT security framework where security functions are optimally deployed among devices. An example of such a solution is presented based on EndToEnd like encryption. The results reveal overall increased security within the network with minimal impact on the traffic.

2020-02-17
Ezick, James, Henretty, Tom, Baskaran, Muthu, Lethin, Richard, Feo, John, Tuan, Tai-Ching, Coley, Christopher, Leonard, Leslie, Agrawal, Rajeev, Parsons, Ben et al..  2019.  Combining Tensor Decompositions and Graph Analytics to Provide Cyber Situational Awareness at HPC Scale. 2019 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.

2020-10-06
Monakhov, Yuri M., Monakhov, Mikhail Yu., Luchinkin, Sergei D., Kuznetsova, Anna P., Monakhova, Maria M..  2019.  Availability as a Metric for Region-Scale Telecommunication Designs. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:775—779.

This article discusses existing approaches to building regional scale networks. Authors offer a mathematical model of network growth process, on the basis of which simulation is performed. The availability characteristic is used as criterion for measuring optimality. This report describes the mechanism for measuring network availability and contains propositions to make changes to the procedure for designing of regional networks, which can improve its qualitative characteristics. The efficiency of changes is confirmed by simulation.

2020-05-04
Wortman, Paul A., Tehranipoor, Fatemeh, Chandy, John A..  2018.  An Adversarial Risk-based Approach for Network Architecture Security Modeling and Design. 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
Network architecture design and verification has become increasingly complicated as a greater number of security considerations, implementations, and factors are included in the design process. In the design process, one must account for various costs of interwoven layers of security. Generally these costs are simplified for evaluation of risk to the network. The obvious implications of adding security are the need to account for the impacts of loss (risk) and accounting for the ensuing increased design costs. The considerations that are not traditionally examined are those of the adversary and the defender of a given system. Without accounting for the view point of the individuals interacting with a network architecture, one can not verify and select the most advantageous security implementation. This work presents a method for obtaining a security metric that takes into account not only the risk of the defender, but also the probability of an attack originating from the motivation of the adversary. We then move to a more meaningful metric based on a monetary unit that architects can use in choosing a best fit solution for a given network critical path design problem.
2019-07-01
Ahmed, Yussuf, Naqvi, Syed, Josephs, Mark.  2018.  Aggregation of Security Metrics for Decision Making: A Reference Architecture. Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings. :53:1–53:7.
Existing security technologies play a significant role in protecting enterprise systems but they are no longer enough on their own given the number of successful cyberattacks against businesses and the sophistication of the tactics used by attackers to bypass the security defences. Security measurement is different to security monitoring in the sense that it provides a means to quantify the security of the systems while security monitoring helps in identifying abnormal events and does not measure the actual state of an infrastructure's security. The goal of enterprise security metrics is to enable understanding of the overall security using measurements to guide decision making. In this paper we present a reference architecture for aggregating the measurement values from the different components of the system in order to enable stakeholders to see the overall security state of their enterprise systems and to assist with decision making. This will provide a newer dimension to security management by shifting from security monitoring to security measurement.
2019-02-08
Mukherjee, Preetam, Mazumdar, Chandan.  2018.  Attack Difficulty Metric for Assessment of Network Security. Proceedings of the 13th International Conference on Availability, Reliability and Security. :44:1-44:10.
In recent days, organizational networks are becoming target of sophisticated multi-hop attacks. Attack Graph has been proposed as a useful modeling tool for complex attack scenarios by combining multiple vulnerabilities in causal chains. Analysis of attack scenarios enables security administrators to calculate quantitative security measurements. These measurements justify security investments in the organization. Different security metrics based on attack graph have been introduced for evaluation of comparable security measurements. Studies show that difficulty of exploiting the same vulnerability changes with change of its position in the causal chains of attack graph. In this paper, a new security metric based on attack graph, namely Attack Difficulty has been proposed to include this position factor. The security metrics are classified in two major categories viz. counting metrics and difficulty-based metrics. The proposed Attack Difficulty Metric employs both categories of metrics as the basis for its measurement. Case studies have been presented for demonstrating applicability of the proposed metric. Comparison of this new metric with other attack graph based security metrics has also been included to validate its acceptance in real life situations.