Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2022-04-26
Feng, Tianyi, Zhang, Zhixiang, Wong, Wai-Choong, Sun, Sumei, Sikdar, Biplab.  2021.  A Privacy-Preserving Pedestrian Dead Reckoning Framework Based on Differential Privacy. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1487–1492.

Pedestrian dead reckoning (PDR) is a widely used approach to estimate locations and trajectories. Accessing location-based services with trajectory data can bring convenience to people, but may also raise privacy concerns that need to be addressed. In this paper, a privacy-preserving pedestrian dead reckoning framework is proposed to protect a user’s trajectory privacy based on differential privacy. We introduce two metrics to quantify trajectory privacy and data utility. Our proposed privacy-preserving trajectory extraction algorithm consists of three mechanisms for the initial locations, stride lengths and directions. In addition, we design an adversary model based on particle filtering to evaluate the performance and demonstrate the effectiveness of our proposed framework with our collected sensor reading dataset.

Mehner, Luise, Voigt, Saskia Nuñez von, Tschorsch, Florian.  2021.  Towards Explaining Epsilon: A Worst-Case Study of Differential Privacy Risks. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :328–331.

Differential privacy is a concept to quantity the disclosure of private information that is controlled by the privacy parameter ε. However, an intuitive interpretation of ε is needed to explain the privacy loss to data engineers and data subjects. In this paper, we conduct a worst-case study of differential privacy risks. We generalize an existing model and reduce complexity to provide more understandable statements on the privacy loss. To this end, we analyze the impact of parameters and introduce the notion of a global privacy risk and global privacy leak.

2022-04-20
Wang, Jinbao, Cai, Zhipeng, Yu, Jiguo.  2020.  Achieving Personalized \$k\$-Anonymity-Based Content Privacy for Autonomous Vehicles in CPS. IEEE Transactions on Industrial Informatics. 16:4242–4251.
Enabled by the industrial Internet, intelligent transportation has made remarkable achievements such as autonomous vehicles by carnegie mellon university (CMU) Navlab, Google Cars, Tesla, etc. Autonomous vehicles benefit, in various aspects, from the cooperation of the industrial Internet and cyber-physical systems. In this process, users in autonomous vehicles submit query contents, such as service interests or user locations, to service providers. However, privacy concerns arise since the query contents are exposed when the users are enjoying the services queried. Existing works on privacy preservation of query contents rely on location perturbation or k-anonymity, and they suffer from insufficient protection of privacy or low query utility incurred by processing multiple queries for a single query content. To achieve sufficient privacy preservation and satisfactory query utility for autonomous vehicles querying services in cyber-physical systems, this article proposes a novel privacy notion of client-based personalized k-anonymity (CPkA). To measure the performance of CPkA, we present a privacy metric and a utility metric, based on which, we formulate two problems to achieve the optimal CPkA in term of privacy and utility. An approach, including two modules, to establish mechanisms which achieve the optimal CPkA is presented. The first module is to build in-group mechanisms for achieving the optimal privacy within each content group. The second module includes linear programming-based methods to compute the optimal grouping strategies. The in-group mechanisms and the grouping strategies are combined to establish optimal CPkA mechanisms, which achieve the optimal privacy or the optimal utility. We employ real-life datasets and synthetic prior distributions to evaluate the CPkA mechanisms established by our approach. The evaluation results illustrate the effectiveness and efficiency of the established mechanisms.
Conference Name: IEEE Transactions on Industrial Informatics
2022-10-20
Varma, Dheeraj, Mishra, Shikhar, Meenpal, Ankita.  2020.  An Adaptive Image Steganographic Scheme Using Convolutional Neural Network and Dual-Tree Complex Wavelet Transform. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
The technique of concealing a confidential information in a carrier information is known as steganography. When we use digital images as carriers, it is termed as image steganography. The advancements in digital technology and the need for information security have given great significance for image steganographic methods in the area of secured communication. An efficient steganographic system is characterized by a good trade-off between its features such as imperceptibility and capacity. The proposed scheme implements an edge-detection based adaptive steganography with transform domain embedding, offering high imperceptibility and capacity. The scheme employs an adaptive embedding technique to select optimal data-hiding regions in carrier image, using Canny edge detection and a Convolutional Neural Network (CNN). Then, the secret image is embedded in the Dual-Tree Complex Wavelet Transform (DTCWT) coefficients of the selected carrier image blocks, with the help of Singular Value Decomposition (SVD). The analysis of the scheme is performed using metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Cross Correlation (NCC).
2021-09-21
Ghanem, Sahar M., Aldeen, Donia Naief Saad.  2020.  AltCC: Alternating Clustering and Classification for Batch Analysis of Malware Behavior. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
The most common goal of malware analysis is to determine if a given binary is malware or benign. Another objective is similarity analysis of malware binaries to understand how new samples differ from known ones. Similarity analysis helps to analyze the malware with respect to those already analyzed and guides the discovery of novel aspects that should be analyzed more in depth. In this work, we are concerned with similarities and differences detection of malware binaries. Thousands of malware are created every day and machine learning is an indispensable tool for its analysis. Previous work has studied clustering and classification as competing paradigms. However, in this work, a malware similarity analysis technique (AltCC) is proposed that alternates the use of clustering and classification. In addition it assumes the malware are not available all at once but processed in batches. Initially, clustering is applied to the first batch to group similar binaries into novel malware classes. Then, the discovered classes are used to train a classifier. For the following batches, the classifier is used to decide if a new binary classifies to a known class or otherwise unclassified. The unclassified binaries are clustered and the process repeats. Malware clustering (i.e. labeling) may entail further human expert analysis but dramatically reduces the effort. The effectiveness of AltCC is studied using a dataset of 29,661 malware binaries that represent malware received in six consecutive days/batches. When KMeans is used to label the dataset all at once and its labeling is compared to AltCC's, the adjusted-rand-index scores 0.71.
bin Asad, Ashub, Mansur, Raiyan, Zawad, Safir, Evan, Nahian, Hossain, Muhammad Iqbal.  2020.  Analysis of Malware Prediction Based on Infection Rate Using Machine Learning Techniques. 2020 IEEE Region 10 Symposium (TENSYMP). :706–709.
In this modern, technological age, the internet has been adopted by the masses. And with it, the danger of malicious attacks by cybercriminals have increased. These attacks are done via Malware, and have resulted in billions of dollars of financial damage. This makes the prevention of malicious attacks an essential part of the battle against cybercrime. In this paper, we are applying machine learning algorithms to predict the malware infection rates of computers based on its features. We are using supervised machine learning algorithms and gradient boosting algorithms. We have collected a publicly available dataset, which was divided into two parts, one being the training set, and the other will be the testing set. After conducting four different experiments using the aforementioned algorithms, it has been discovered that LightGBM is the best model with an AUC Score of 0.73926.
2021-01-11
Žulj, S., Delija, D., Sirovatka, G..  2020.  Analysis of secure data deletion and recovery with common digital forensic tools and procedures. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1607–1610.
This paper presents how students practical’s is developed and used for the important task forensic specialist have to do when using common digital forensic tools for data deletion and data recovery from various types of digital media and live systems. Digital forensic tools like EnCase, FTK imager, BlackLight, and open source tools are discussed in developed practical’s scenarios. This paper shows how these tools can be used to train and enhance student understanding of the capabilities and limitations of digital forensic tools in uncommon digital forensic scenarios. Students’ practicals encourage students to efficiently use digital forensic tools in the various professional scenarios that they will encounter.
2021-09-21
Kartel, Anastasia, Novikova, Evgenia, Volosiuk, Aleksandr.  2020.  Analysis of Visualization Techniques for Malware Detection. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :337–340.
Due to the steady growth of various sophisticated types of malware, different malware analysis systems are becoming more and more demanded. While there are various automatic approaches available to identify and detect malware, the malware analysis is still time-consuming process. The visualization-driven techniques may significantly increase the efficiency of the malware analysis process by involving human visual system which is a powerful pattern seeker. In this paper the authors reviewed different visualization methods, examined their features and tasks solved with their help. The paper presents the most commonly used approaches and discusses open challenges in malware visual analytics.
2021-05-25
Zanin, M., Menasalvas, E., González, A. Rodriguez, Smrz, P..  2020.  An Analytics Toolbox for Cyber-Physical Systems Data Analysis: Requirements and Challenges. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :271–276.
The fast improvement in telecommunication technologies that has characterised the last decade is enabling a revolution centred on Cyber-Physical Systems (CPSs). Elements inside cities, from vehicles to cars, can now be connected and share data, describing both our environment and our behaviours. These data can also be used in an active way, by becoming the tenet of innovative services and products, i.e. of Cyber-Physical Products (CPPs). Still, having data is not tantamount to having knowledge, and an important overlooked topic is how should them be analysed. In this contribution we tackle the issue of the development of an analytics toolbox for processing CPS data. Specifically, we review and quantify the main requirements that should be fulfilled, both functional (e.g. flexibility or dependability) and technical (e.g. scalability, response time, etc.). We further propose an initial set of analysis that should in it be included. We finally review some challenges and open issues, including how security and privacy could be tackled by emerging new technologies.
2021-10-12
Tavakolan, Mona, Faridi, Ismaeel A..  2020.  Applying Privacy-Aware Policies in IoT Devices Using Privacy Metrics. 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI). :1–5.
In recent years, user's privacy has become an important aspect in the development of Internet of Things (IoT) devices. However, there has been comparatively little research so far that aims to understanding user's privacy in connection with IoT. Many users are worried about protecting their personal information, which may be gathered by IoT devices. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value.
2021-02-10
Tizio, G. Di, Ngo, C. Nam.  2020.  Are You a Favorite Target For Cryptojacking? A Case-Control Study On The Cryptojacking Ecosystem 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :515—520.
Illicitly hijacking visitors' computational resources for mining cryptocurrency via compromised websites is a consolidated activity.Previous works mainly focused on large-scale analysis of the cryptojacking ecosystem, technical means to detect browser-based mining as well as economic incentives of cryptojacking. So far, no one has studied if certain technical characteristics of a website can increase (decrease) the likelihood of being compromised for cryptojacking campaigns.In this paper, we propose to address this unanswered question by conducting a case-control study with cryptojacking websites obtained crawling the web using Minesweeper. Our preliminary analysis shows some association for certain website characteristics, however, the results obtained are not statistically significant. Thus, more data must be collected and further analysis must be conducted to obtain a better insight into the impact of these relations.
2021-11-30
Gao, Jianbang, Yuan, Zhaohui, Qiu, Bin.  2020.  Artificial Noise Projection Matrix Optimization Method for Secure Multi-Cast Wireless Communication. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :33–37.
Transmit beamforming and artificial noise (AN) methods have been widely employed to achieve wireless physical layer (PHY) secure transmissions. While most works focus on transmit beamforming optimization, little attention is paid to the design of artificial noise projection matrix (ANPM). In this paper, compared with traditional ANPM obtained by zero-forcing method, which only makes AN power uniform distribution in free space outside legitimate users (LU) locations, we design ANPM to maximize the interference on eavesdroppers without interference on LUs for multicast directional modulation (MCDM) scenario based on frequency diverse array (FDA). Furthermore, we extend our approach to the case of with imperfect locations of Eves. Finally, simulation results show that Eves can be seriously affected by the AN with perfect/imperfect locations, respectively.
2021-09-21
Yang, Ping, Shu, Hui, Kang, Fei, Bu, Wenjuan.  2020.  Automatically Generating Malware Summary Using Semantic Behavior Graphs (SBGs). 2020 Information Communication Technologies Conference (ICTC). :282–291.
In malware behavior analysis, there are limitations in the analysis method of control flow and data flow. Researchers analyzed data flow by dynamic taint analysis tools, however, it cost a lot. In this paper, we proposed a method of generating malware summary based on semantic behavior graphs (SBGs, Semantic Behavior Graphs) to address this issue. In this paper, we considered various situation where behaviors be capable of being associated, thus an algorithm of generating semantic behavior graphs was given firstly. Semantic behavior graphs are composed of behavior nodes and associated data edges. Then, we extracted behaviors and logical relationships between behaviors from semantic behavior graphs, and finally generated a summary of malware behaviors with true intension. Experimental results showed that our approach can effectively identify and describe malicious behaviors and generate accurate behavior summary.
2021-04-27
Tsai, W., Chou, T., Chen, J., Ma, Y., Huang, C..  2020.  Blockchain as a Platform for Secure Cloud Computing Services. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :155—158.
Problems related to privacy and cyber-attacks have increased in recent years as a result of the rapid development of cloud computing. This work concerns secure cloud computing services on a blockchain platform, called cloud@blockchain, which benefit from the anonymity and immutability of blockchain. Two functions- anonymous file sharing and inspections to find illegally uploaded files- on cloud@blockchain are designed. On cloud@blockchain, cloud users can access data through smart contracts, and recognize all users within the application layer. The performance of three architectures- a pure blockchain, a hybrid blockchain with cache and a traditional database in accessing data is analyzed. The results reveal the superiority of the hybrid blockchain with the cache over the pure blockchain and the traditional database, which it outperforms by 500% and 53.19%, respectively.
2021-06-24
Połap, Dawid, Srivastava, Gautam, Jolfaei, Alireza, Parizi, Reza M..  2020.  Blockchain Technology and Neural Networks for the Internet of Medical Things. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :508–513.
In today's technological climate, users require fast automation and digitization of results for large amounts of data at record speeds. Especially in the field of medicine, where each patient is often asked to undergo many different examinations within one diagnosis or treatment. Each examination can help in the diagnosis or prediction of further disease progression. Furthermore, all produced data from these examinations must be stored somewhere and available to various medical practitioners for analysis who may be in geographically diverse locations. The current medical climate leans towards remote patient monitoring and AI-assisted diagnosis. To make this possible, medical data should ideally be secured and made accessible to many medical practitioners, which makes them prone to malicious entities. Medical information has inherent value to malicious entities due to its privacy-sensitive nature in a variety of ways. Furthermore, if access to data is distributively made available to AI algorithms (particularly neural networks) for further analysis/diagnosis, the danger to the data may increase (e.g., model poisoning with fake data introduction). In this paper, we propose a federated learning approach that uses decentralized learning with blockchain-based security and a proposition that accompanies that training intelligent systems using distributed and locally-stored data for the use of all patients. Our work in progress hopes to contribute to the latest trend of the Internet of Medical Things security and privacy.
2021-01-11
Wang, W.-C., Ho, C.-C., Chang, Y.-M., Chang, Y.-H..  2020.  Challenges and Designs for Secure Deletion in Storage Systems. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :181–189.
Data security has risen to be one of the most critical concerns of computer professionals. Tighter legal requirements now exist for the purpose of protecting user data from unauthorized uses and for both preserving and erasing/sanitizing data records to meet legal compliance requirements. To meet the data security requirement, many secure (data) deletion techniques have been proposed to deal with the data security concerns from different system layers. This paper surveys the state-of-the-art secure deletion techniques that have been designed to pursue higher efficiency, verifiability, and portability for emerging types of hard disk drives and flash-based solid-state drives. Meanwhile, the pros and cons of implementing secure deletion in different system layers are also discussed, so as to assist in pursuing better secure deletion designs for future storage systems.
2022-10-20
Pan, I-Hui, Liu, Kung-Chin, Liu, Chiang-Lung.  2020.  Chi-Square Detection for PVD Steganography. 2020 International Symposium on Computer, Consumer and Control (IS3C). :30—33.
Although the Pixel-Value Differencing (PVD) steganography can avoid being detected by the RS steganalysis, the histogram of the pixel-value differences poses an abnormal distribution. Based on this hiding characteristic, this paper proposes a PVD steganalysis based on chi-Square statistics. The degrees of freedom were adopted to be tested for obtaining various detection accuracies (ACs). Experimental results demonstrate the detection accuracies are all above 80%. When the degrees of freedom are set as 10 while the accuracy is the best (AC = 83%). It means that the proposed Chi-Square based method is an efficient detection for PVD steganography.
2021-09-21
Barr, Joseph R., Shaw, Peter, Abu-Khzam, Faisal N., Yu, Sheng, Yin, Heng, Thatcher, Tyler.  2020.  Combinatorial Code Classification Amp; Vulnerability Rating. 2020 Second International Conference on Transdisciplinary AI (TransAI). :80–83.
Empirical analysis of source code of Android Fluoride Bluetooth stack demonstrates a novel approach of classification of source code and rating for vulnerability. A workflow that combines deep learning and combinatorial techniques with a straightforward random forest regression is presented. Two kinds of embedding are used: code2vec and LSTM, resulting in a distance matrix that is interpreted as a (combinatorial) graph whose vertices represent code components, functions and methods. Cluster Editing is then applied to partition the vertex set of the graph into subsets representing nearly complete subgraphs. Finally, the vectors representing the components are used as features to model the components for vulnerability risk.
2021-11-30
Hu, Xiaoming, Tan, Wenan, Ma, Chuang.  2020.  Comment and Improvement on Two Aggregate Signature Schemes for Smart Grid and VANET in the Learning of Network Security. 2020 International Conference on Information Science and Education (ICISE-IE). :338–341.
Smart substation and Vehicular Ad-Hoc Network (VANET) are two important applications of aggregate signature scheme. Due to the large number of data collection equipment in substation, it needs security authentication and integrity protection to transmit data. Similarly, in VANET, due to limited resources, it has the needs of privacy protection and improving computing efficiency. Aggregate signature scheme can satisfy the above these needs and realize one-time verification of signature for multi-terminal data collection which can improve the performance. Aggregate signature scheme is an important technology to solve network security problem. Recently, many aggregate signature schemes are proposed which can be applied in smart grid or VANET. In this paper, we present two security analyses on two aggregate signature schemes proposed recently. By analysis, it shows that the two aggregate signature schemes do not satisfy the security property of unforgeability. A malicious user can forge a signature on any message. We also present some improved methods to solve these security problems with better performance. From security analysis to improvement of aggregate signature scheme, it is very suitable to be an instance to exhibit the students on designing of security aggregate signature scheme for network security education or course.
2021-09-21
Brezinski, Kenneth, Ferens, Ken.  2020.  Complexity-Based Convolutional Neural Network for Malware Classification. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :1–9.
Malware classification remains at the forefront of ongoing research as the prevalence of metamorphic malware introduces new challenges to anti-virus vendors and firms alike. One approach to malware classification is Static Analysis - a form of analysis which does not require malware to be executed before classification can be performed. For this reason, a lightweight classifier based on the features of a malware binary is preferred, with relatively low computational overhead. In this work a modified convolutional neural network (CNN) architecture was deployed which integrated a complexity-based evaluation based on box-counting. This was implemented by setting up max-pooling layers in parallel, and then extracting the fractal dimension using a polyscalar relationship based on the resolution of the measurement scale and the number of elements of a malware image covered in the measurement under consideration. To test the robustness and efficacy of our approach we trained and tested on over 9300 malware binaries from 25 unique malware families. This work was compared to other award-winning image recognition models, and results showed categorical accuracy in excess of 96.54%.
2021-10-12
Onu, Emmanuel, Mireku Kwakye, Michael, Barker, Ken.  2020.  Contextual Privacy Policy Modeling in IoT. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :94–102.
The Internet of Things (IoT) has been one of the biggest revelations of the last decade. These cyber-physical systems seamlessly integrate and improve the activities in our daily lives. Hence, creating a wide application for it in several domains, such as smart buildings and cities. However, the integration of IoT also comes with privacy challenges. The privacy challenges result from the ability of these devices to pervasively collect personal data about individuals through sensors in ways that could be unknown to them. A number of research efforts have evaluated privacy policy awareness and enforcement as key components for addressing these privacy challenges. This paper provides a framework for understanding contextualized privacy policy within the IoT domain. This will enable IoT privacy researchers to better understand IoT privacy policies and their modeling.
2021-11-08
Shaukat, Kamran, Luo, Suhuai, Chen, Shan, Liu, Dongxi.  2020.  Cyber Threat Detection Using Machine Learning Techniques: A Performance Evaluation Perspective. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
The present-day world has become all dependent on cyberspace for every aspect of daily living. The use of cyberspace is rising with each passing day. The world is spending more time on the Internet than ever before. As a result, the risks of cyber threats and cybercrimes are increasing. The term `cyber threat' is referred to as the illegal activity performed using the Internet. Cybercriminals are changing their techniques with time to pass through the wall of protection. Conventional techniques are not capable of detecting zero-day attacks and sophisticated attacks. Thus far, heaps of machine learning techniques have been developed to detect the cybercrimes and battle against cyber threats. The objective of this research work is to present the evaluation of some of the widely used machine learning techniques used to detect some of the most threatening cyber threats to the cyberspace. Three primary machine learning techniques are mainly investigated, including deep belief network, decision tree and support vector machine. We have presented a brief exploration to gauge the performance of these machine learning techniques in the spam detection, intrusion detection and malware detection based on frequently used and benchmark datasets.
2021-11-30
Wagh, Gaurav S., Mishra, Sumita.  2020.  A Cyber-Resilient Privacy Framework for the Smart Grid with Dynamic Billing Capabilities. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.
The desired features for the smart grid include dynamic billing capabilities along with consumer privacy protection. Existing aggregation-based privacy frameworks have limitations such as centralized designs prone to single points of failure and/or a high computational overload on the smart meters due to in-network aggregation or complex algorithmic operations. Additionally, these existing schemes do not consider how dynamic billing can be implemented while consumer privacy is preserved. In this paper, a cyber-resilient framework that enables dynamic billing while focusing on consumer privacy preservation is proposed. The distributed design provides a framework for spatio-temporal aggregation and keeps the process lightweight for the smart meters. The comparative analysis of our proposed work with existing work shows a significant improvement in terms of the spatial aggregation overhead, overhead on smart meters and scalability. The paper also discusses the resilience of our framework against privacy attacks.
2021-04-27
Sekar, K., Devi, K. Suganya, Srinivasan, P., SenthilKumar, V. M..  2020.  Deep Wavelet Architecture for Compressive sensing Recovery. 2020 Seventh International Conference on Information Technology Trends (ITT). :185–189.
The deep learning-based compressive Sensing (CS) has shown substantial improved performance and in run-time reduction with signal sampling and reconstruction. In most cases, moreover, these techniques suffer from disrupting artefacts or high-frequency contents at low sampling ratios. Similarly, this occurs in the multi-resolution sampling method, which further collects more components with lower frequencies. A promising innovation combining CS with convolutionary neural network has eliminated the sparsity constraint yet recovery persists slow. We propose a Deep wavelet based compressive sensing with multi-resolution framework provides better improvement in reconstruction as well as run time. The proposed model demonstrates outstanding quality on test functions over previous approaches.
2021-02-01
Sendhil, R., Amuthan, A..  2020.  A Descriptive Study on Homomorphic Encryption Schemes for Enhancing Security in Fog Computing. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :738–743.
Nowadays, Fog Computing gets more attention due to its characteristics. Fog computing provides more advantages in related to apply with the latest technology. On the other hand, there is an issue about the data security over processing of data. Fog Computing encounters many security challenges like false data injection, violating privacy in edge devices and integrity of data, etc. An encryption scheme called Homomorphic Encryption (HME) technique is used to protect the data from the various security threats. This homomorphic encryption scheme allows doing manipulation over the encrypted data without decrypting it. This scheme can be implemented in many systems with various crypto-algorithms. This homomorphic encryption technique is mainly used to retain the privacy and to process the stored encrypted data on a remote server. This paper addresses the terminologies of Fog Computing, work flow and properties of the homomorphic encryption algorithm, followed by exploring the application of homomorphic encryption in various public key cryptosystems such as RSA and Pailier. It focuses on various homomorphic encryption schemes implemented by various researchers such as Brakerski-Gentry-Vaikuntanathan model, Improved Homomorphic Cryptosystem, Upgraded ElGamal based Algebric homomorphic encryption scheme, In-Direct rapid homomorphic encryption scheme which provides integrity of data.