Biblio

Filters: Keyword is network analysis  [Clear All Filters]
2022-08-12
Aguinaldo, Roberto Daniel, Solano, Geoffrey, Pontiveros, Marc Jermaine, Balolong, Marilen Parungao.  2021.  NAMData: A Web-application for the Network Analysis of Microbiome Data. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). :341–346.
Recent projects regarding the exploration of the functions of microbiomes within communities brought about a plethora of new data. That specific field of study is called Metagenomics and one of its more advancing approach is the application of network analysis. The paper introduces NAMData which is a web-application tool for the network analysis of microbiome data. The system handles the compositionality and sparsity nature of microbiome data by applying taxa filtration, normalization, and zero treatment. Furthermore, compositionally aware correlation estimators were used to compute for the correlation between taxa and the system divides the network into the positive and negative correlation network. NAMData aims to capitalize on the unique network features namely network visualization, centrality scores, and community detection. The system enables researchers to include network analysis in their analysis pipelines even without any knowledge of programming. Biological concepts can be integrated with the network findings gathered from the system to either support existing facts or form new insights.
2022-02-09
Zhou, Yitao, Wu, Judong, Zhang, Shengxin.  2021.  Anonymity Analysis of Bitcoin, Zcash and Ethereum. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :45–48.
As an innovative type of decentralized model, blockchain is a growing list of blocks linked by cryptography. Blockchain incorporates anonymity protocol, distributed data storage, consensus algorithm, and smart contract. The anonymity protocols in blockchain are significant in that they could protect users from leaking their personal information. In this paper, we will conduct a detailed review and comparison of anonymity protocols used in three famous cryptocurrencies, namely Bitcoin, Zcash, and Ethereum.
2021-03-09
Liao, Q., Gu, Y., Liao, J., Li, W..  2020.  Abnormal transaction detection of Bitcoin network based on feature fusion. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:542—549.

Anomaly detection is one of the research hotspots in Bitcoin transaction data analysis. In view of the existing research that only considers the transaction as an isolated node when extracting features, but has not yet used the network structure to dig deep into the node information, a bitcoin abnormal transaction detection method that combines the node’s own features and the neighborhood features is proposed. Based on the formation mechanism of the interactive relationship in the transaction network, first of all, according to a certain path selection probability, the features of the neighbohood nodes are extracted by way of random walk, and then the node’s own features and the neighboring features are fused to use the network structure to mine potential node information. Finally, an unsupervised detection algorithm is used to rank the transaction points on the constructed feature set to find abnormal transactions. Experimental results show that, compared with the existing feature extraction methods, feature fusion improves the ability to detect abnormal transactions.

2020-10-29
Gayathri, S, Seetharaman, R., Subramanian, L.Harihara, Premkumar, S., Viswanathan, S., Chandru, S..  2019.  Wormhole Attack Detection using Energy Model in MANETs. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :264—268.
The mobile ad-hoc networks comprised of nodes that are communicated through dynamic request and also by static table driven technique. The dynamic route discovery in AODV routing creates an unsecure transmission as well as reception. The reason for insecurity is the route request is given to all the nodes in the network communication. The possibility of the intruder nodes are more in the case of dynamic route request. Wormhole attacks in MANETs are creating challenges in the field of network analysis. In this paper the wormhole scenario is realized using high power transmission. This is implemented using energy model of ns2 simulator. The Apptool simulator identifies the energy level of each node and track the node of high transmission power. The performance curves for throughput, node energy for different encrypted values, packet drop ratio, and end to end delay are plotted.
2017-12-12
Gamachchi, A., Boztas, S..  2017.  Insider Threat Detection Through Attributed Graph Clustering. 2017 IEEE Trustcom/BigDataSE/ICESS. :112–119.

While most organizations continue to invest in traditional network defences, a formidable security challenge has been brewing within their own boundaries. Malicious insiders with privileged access in the guise of a trusted source have carried out many attacks causing far reaching damage to financial stability, national security and brand reputation for both public and private sector organizations. Growing exposure and impact of the whistleblower community and concerns about job security with changing organizational dynamics has further aggravated this situation. The unpredictability of malicious attackers, as well as the complexity of malicious actions, necessitates the careful analysis of network, system and user parameters correlated with insider threat problem. Thus it creates a high dimensional, heterogeneous data analysis problem in isolating suspicious users. This research work proposes an insider threat detection framework, which utilizes the attributed graph clustering techniques and outlier ranking mechanism for enterprise users. Empirical results also confirm the effectiveness of the method by achieving the best area under curve value of 0.7648 for the receiver operating characteristic curve.

2017-09-15
Hamda, Kento, Ishigaki, Genya, Sakai, Yoichi, Shinomiya, Norihiko.  2016.  Significance Analysis for Edges in a Graph by Means of Leveling Variables on Nodes. Proceedings of the 7th International Conference on Computing Communication and Networking Technologies. :27:1–27:5.

This paper proposes a novel measure for edge significance considering quantity propagation in a graph. Our method utilizes a pseudo propagation process brought by solving a problem of a load balancing on nodes. Edge significance is defined as a difference of propagation in a graph with an edge to without it. The simulation compares our proposed method with the traditional betweenness centrality in order to obtain differences of our measure to a type of centrality, which considers propagation process in a graph.

2017-08-18
Clark, Ruaridh, Punzo, Giuliano, Baumanis, Kristaps, Macdonald, Malcolm.  2016.  Consensus Speed Maximisation in Engineered Swarms with Autocratic Leaders. Proceedings of the International Conference on Artificial Intelligence and Robotics and the International Conference on Automation, Control and Robotics Engineering. :8:1–8:5.

Control of a large engineered swarm can be achieved by influencing key agents within the swarm. The swarm can rely on its communication network to spread the external perturbation and transition to a new state when all agents reach a consensus. Maximising this consensus speed is a vital design parameter when fast response is desirable. The systems analysed consist of N interacting agents that have the same number of outward, observing, connections that follow k-nearest neighbour rules and are represented by a directed graph Laplacian. The spectral properties of this graph are exploited to identify leaders with a newly presented semi-analytical approach referred to as the Leaders of Influence (LoI) method. This method is demonstrated on k-NNR graphs for a set number of leaders. These methods are compared with a genetic algorithm and are shown to be efficient and effective at leader identification. A focus of this work is the effect of leadership style on consensus speed where an autocratic approach (leaders that are not influenced by other nodes in the graph) is shown to always produce faster consensus than a democratic leadership model.

2017-03-07
Isah, H., Neagu, D., Trundle, P..  2015.  Bipartite network model for inferring hidden ties in crime data. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :994–1001.

Certain crimes are difficult to be committed by individuals but carefully organised by group of associates and affiliates loosely connected to each other with a single or small group of individuals coordinating the overall actions. A common starting point in understanding the structural organisation of criminal groups is to identify the criminals and their associates. Situations arise in many criminal datasets where there is no direct connection among the criminals. In this paper, we investigate ties and community structure in crime data in order to understand the operations of both traditional and cyber criminals, as well as to predict the existence of organised criminal networks. Our contributions are twofold: we propose a bipartite network model for inferring hidden ties between actors who initiated an illegal interaction and objects affected by the interaction, we then validate the method in two case studies on pharmaceutical crime and underground forum data using standard network algorithms for structural and community analysis. The vertex level metrics and community analysis results obtained indicate the significance of our work in understanding the operations and structure of organised criminal networks which were not immediately obvious in the data. Identifying these groups and mapping their relationship to one another is essential in making more effective disruption strategies in the future.

2016-12-06
Ju-Sung Lee, Jurgen Pfeffer.  2015.  Estimating Centrality Statistics for Large Scale and Sampled Networks: Some Approaches and Complications. 2015 48th Hawaii International Conference on System Sciences.

The study of large, “big data” networks is becoming increasingly common and relevant to our understanding of human systems. Many of the studied networks are drawn from social media and other web-based sources. As such, in-depth analysis of these dynamic structures e.g. in the context of cybersecurity, remains especially challenging. Due to the time and resources incurred in computing network measures for large networks, it is practical to approximate these whenever possible. We present some approximation techniques exploiting any tractable relationship between the measures and network characteristics such as size and density. We find there exist distinct functional relationships between network statistics of complex “slow” measures and “fast” measures, such as the linkage between betweenness centrality and network density. We also track how these relationships scale with network size. Specifically, we explore the effi- cacy of both linear modeling (i.e., correlations and least squares regression) and non-linear modeling in estimating the network measures of interest. We find that sparse, but not severely sparse, networks which admit sufficient entropy incur the most variance in the network statistics and, hence, more error in the estimation. We review our approaches with three prominent network topologies: random (aka Erdos-R ˝ enyi), Watts- ´ Strogatz small-world, and scale-free networks. Finally, we assess how well the estimation approaches perform for sub-sampled networks.

Ju-Sung Lee, Jurgen Pfeffer.  2015.  Robustness of Network Metrics in the Context of Digital Communication Data. HICSS '15 Proceedings of the 2015 48th Hawaii International Conference on System Sciences.

Social media data and other web-based network data are large and dynamic rendering the identification of structural changes in such systems a hard problem. Typically, online data is constantly streaming and results in data that is incomplete thus necessitating the need to understand the robustness of network metrics on partial or sampled network data. In this paper, we examine the effects of sampling on key network centrality metrics using two empirical communication datasets. Correlations between network metrics of original and sampled nodes offer a measure of sampling accuracy. The relationship between sampling and accuracy is convergent and amenable to nonlinear analysis. Naturally, larger edge samples induce sampled graphs that are more representative of the original graph. However, this effect is attenuated when larger sets of nodes are recovered in the samples. Also, we find that the graph structure plays a prominent role in sampling accuracy. Centralized graphs, in which fewer nodes enjoy higher centrality scores, offer more representative samples.

2017-03-07
Olabelurin, A., Veluru, S., Healing, A., Rajarajan, M..  2015.  Entropy clustering approach for improving forecasting in DDoS attacks. 2015 IEEE 12th International Conference on Networking, Sensing and Control. :315–320.

Volume anomaly such as distributed denial-of-service (DDoS) has been around for ages but with advancement in technologies, they have become stronger, shorter and weapon of choice for attackers. Digital forensic analysis of intrusions using alerts generated by existing intrusion detection system (IDS) faces major challenges, especially for IDS deployed in large networks. In this paper, the concept of automatically sifting through a huge volume of alerts to distinguish the different stages of a DDoS attack is developed. The proposed novel framework is purpose-built to analyze multiple logs from the network for proactive forecast and timely detection of DDoS attacks, through a combined approach of Shannon-entropy concept and clustering algorithm of relevant feature variables. Experimental studies on a cyber-range simulation dataset from the project industrial partners show that the technique is able to distinguish precursor alerts for DDoS attacks, as well as the attack itself with a very low false positive rate (FPR) of 22.5%. Application of this technique greatly assists security experts in network analysis to combat DDoS attacks.

2014-09-17
Kästner, Christian, Pfeffer, Jürgen.  2014.  Limiting Recertification in Highly Configurable Systems: Analyzing Interactions and Isolation Among Configuration Options. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :23:1–23:2.

In highly configurable systems the configuration space is too big for (re-)certifying every configuration in isolation. In this project, we combine software analysis with network analysis to detect which configuration options interact and which have local effects. Instead of analyzing a system as Linux and SELinux for every combination of configuration settings one by one (>102000 even considering compile-time configurations only), we analyze the effect of each configuration option once for the entire configuration space. The analysis will guide us to designs separating interacting configuration options in a core system and isolating orthogonal and less trusted configuration options from this core.

2016-12-06
Christian Kästner, Jurgen Pfeffer.  2014.  Analyzing Interactions and Isolation among Configuration Options. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

In highly configurable systems the configuration space is too big for (re-)certifying every configuration in isolation. In this project, we combine software analysis with network analysis to detect which configuration options interact and which have local effects. Instead of analyzing a system as Linux and SELinux for every combination of configuration settings one by one (>102000 even considering compile-time configurations only), we analyze the effect of each configuration option once for the entire configuration space. The analysis will guide us to designs separating interacting configuration options in a core system and isolating orthogonal and less trusted configuration options from this core. 

2016-12-08
Christian Kästner, Jurgen Pfeffer.  2014.  Limiting Recertification in Highly Configurable Systems Analyzing Interactions and Isolation among Configuration Options. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

In highly configurable systems the configuration space is too big for (re-)certifying every configuration in isolation. In this project, we combine software analysis with network analysis to detect which configuration options interact and which have local effects. Instead of analyzing a system as Linux and SELinux for every combination of configuration settings one by one (>102000 even considering compile-time configurations only), we analyze the effect of each configuration option once for the entire configuration space. The analysis will guide us to designs separating interacting configuration options in a core system and isolating orthogonal and less trusted configuration options from this core. 

2015-01-14
Kaestner, Christian, Pfeffer, Juergen.  2014.  Limiting Recertification in Highly Configurable Systems: Analyzing Interactions and Isolation among Configuration Options. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

In highly configurable systems the configuration space is too big for (re-)certifying every configuration in isolation. In this project, we combine software analysis with network analysis to detect which configuration options interact and which have local effects. Instead of analyzing a system as Linux and SELinux for every combination of configuration settings one by one (>102000 even considering compile-time configurations only), we analyze the effect of each configuration option once for the entire configuration space. The analysis will guide us to designs separating interacting configuration options in a core system and isolating orthogonal and less trusted configuration options from this core.