Biblio

Found 1065 results

Filters: Keyword is machine learning  [Clear All Filters]
2017-03-07
Petrić, Jean, Bowes, David, Hall, Tracy, Christianson, Bruce, Baddoo, Nathan.  2016.  The Jinx on the NASA Software Defect Data Sets. Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering. :13:1–13:5.

Background: The NASA datasets have previously been used extensively in studies of software defects. In 2013 Shepperd et al. presented an essential set of rules for removing erroneous data from the NASA datasets making this data more reliable to use. Objective: We have now found additional rules necessary for removing problematic data which were not identified by Shepperd et al. Results: In this paper, we demonstrate the level of erroneous data still present even after cleaning using Shepperd et al.'s rules and apply our new rules to remove this erroneous data. Conclusion: Even after systematic data cleaning of the NASA MDP datasets, we found new erroneous data. Data quality should always be explicitly considered by researchers before use.

2017-09-19
Washha, Mahdi, Qaroush, Aziz, Sedes, Florence.  2016.  Leveraging Time for Spammers Detection on Twitter. Proceedings of the 8th International Conference on Management of Digital EcoSystems. :109–116.

Twitter is one of the most popular microblogging social systems, which provides a set of distinctive posting services operating in real time. The flexibility of these services has attracted unethical individuals, so-called "spammers", aiming at spreading malicious, phishing, and misleading information. Unfortunately, the existence of spam results non-ignorable problems related to search and user's privacy. In the battle of fighting spam, various detection methods have been designed, which work by automating the detection process using the "features" concept combined with machine learning methods. However, the existing features are not effective enough to adapt spammers' tactics due to the ease of manipulation in the features. Also, the graph features are not suitable for Twitter based applications, though the high performance obtainable when applying such features. In this paper, beyond the simple statistical features such as number of hashtags and number of URLs, we examine the time property through advancing the design of some features used in the literature, and proposing new time based features. The new design of features is divided between robust advanced statistical features incorporating explicitly the time attribute, and behavioral features identifying any posting behavior pattern. The experimental results show that the new form of features is able to classify correctly the majority of spammers with an accuracy higher than 93% when using Random Forest learning algorithm, applied on a collected and annotated data-set. The results obtained outperform the accuracy of the state of the art features by about 6%, proving the significance of leveraging time in detecting spam accounts.

2017-09-05
Page, Adam, Attaran, Nasrin, Shea, Colin, Homayoun, Houman, Mohsenin, Tinoosh.  2016.  Low-Power Manycore Accelerator for Personalized Biomedical Applications. Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. :63–68.

Wearable personal health monitoring systems can offer a cost effective solution for human healthcare. These systems must provide both highly accurate, secured and quick processing and delivery of vast amount of data. In addition, wearable biomedical devices are used in inpatient, outpatient, and at home e-Patient care that must constantly monitor the patient's biomedical and physiological signals 24/7. These biomedical applications require sampling and processing multiple streams of physiological signals with strict power and area footprint. The processing typically consists of feature extraction, data fusion, and classification stages that require a large number of digital signal processing and machine learning kernels. In response to these requirements, in this paper, a low-power, domain-specific many-core accelerator named Power Efficient Nano Clusters (PENC) is proposed to map and execute the kernels of these applications. Experimental results show that the manycore is able to reduce energy consumption by up to 80% and 14% for DSP and machine learning kernels, respectively, when optimally parallelized. The performance of the proposed PENC manycore when acting as a coprocessor to an Intel Atom processor is compared with existing commercial off-the-shelf embedded processing platforms including Intel Atom, Xilinx Artix-7 FPGA, and NVIDIA TK1 ARM-A15 with GPU SoC. The results show that the PENC manycore architecture reduces the energy by as much as 10X while outperforming all off-the-shelf embedded processing platforms across all studied machine learning classifiers.

2017-09-19
Hamid, Yasir, Sugumaran, M., Journaux, Ludovic.  2016.  Machine Learning Techniques for Intrusion Detection: A Comparative Analysis. Proceedings of the International Conference on Informatics and Analytics. :53:1–53:6.

With the growth of internet world has transformed into a global market with all monetary and business exercises being carried online. Being the most imperative resource of the developing scene, it is the vulnerable object and hence needs to be secured from the users with dangerous personality set. Since the Internet does not have focal surveillance component, assailants once in a while, utilizing varied and advancing hacking topologies discover a path to bypass framework's security and one such collection of assaults is Intrusion. An intrusion is a movement of breaking into the framework by compromising the security arrangements of the framework set up. The technique of looking at the system information for the conceivable intrusions is known intrusion detection. For the last two decades, automatic intrusion detection system has been an important exploration point. Till now researchers have developed Intrusion Detection Systems (IDS) with the capability of detecting attacks in several available environments; latest on the scene are Machine Learning approaches. Machine learning techniques are the set of evolving algorithms that learn with experience, have improved performance in the situations they have already encountered and also enjoy a broad range of applications in speech recognition, pattern detection, outlier analysis etc. There are a number of machine learning techniques developed for different applications and there is no universal technique that can work equally well on all datasets. In this work, we evaluate all the machine learning algorithms provided by Weka against the standard data set for intrusion detection i.e. KddCupp99. Different measurements contemplated are False Positive Rate, precision, ROC, True Positive Rate.

2017-08-22
Salem, Aleieldin, Banescu, Sebastian.  2016.  Metadata Recovery from Obfuscated Programs Using Machine Learning. Proceedings of the 6th Workshop on Software Security, Protection, and Reverse Engineering. :1:1–1:11.

Obfuscation is a mechanism used to hinder reverse engineering of programs. To cope with the large number of obfuscated programs, especially malware, reverse engineers automate the process of deobfuscation i.e. extracting information from obfuscated programs. Deobfuscation techniques target specific obfuscation transformations, which requires reverse engineers to manually identify the transformations used by a program, in what is known as metadata recovery attack. In this paper, we present Oedipus, a Python framework that uses machine learning classifiers viz., decision trees and naive Bayes, to automate metadata recovery attacks against obfuscated programs. We evaluated Oedipus' performance using two datasets totaling 1960 unobfuscated C programs, which were used to generate 11.075 programs obfuscated using 30 configurations of 6 different obfuscation transformations. Our results empirically show the feasibility of using machine learning to implement the metadata recovery attacks with classification accuracies of 100% in some cases.

2017-06-05
das Dôres, Silvia N., Alves, Luciano, Ruiz, Duncan D., Barros, Rodrigo C..  2016.  A Meta-learning Framework for Algorithm Recommendation in Software Fault Prediction. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :1486–1491.

Software fault prediction is a significant part of software quality assurance and it is commonly used to detect faulty software modules based on software measurement data. Several machine learning based approaches have been proposed for generating predictive models from collected data, although none has become standard given the specificities of each software project. Hence, we believe that recommending the best algorithm for each project is much more important and useful than developing a single algorithm for being used in any project. For achieving that goal, we propose in this paper a novel framework for recommending machine learning algorithms that is capable of automatically identifying the most suitable algorithm according to the software project that is being considered. Our solution, namely SFP-MLF, makes use of the meta-learning paradigm in order to learn the best learner for a particular project. Results show that the SFP-MLF framework provides both the best single algorithm recommendation and also the best ranking recommendation for the software fault prediction problem.

2017-10-18
Conti, Mauro, Nati, Michele, Rotundo, Enrico, Spolaor, Riccardo.  2016.  Mind The Plug! Laptop-User Recognition Through Power Consumption. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :37–44.

The Internet of Things (IoT) paradigm, in conjunction with the one of smart cities, is pursuing toward the concept of smart buildings, i.e., “intelligent” buildings able to receive data from a network of sensors and thus to adapt the environment. IoT sensors can monitor a wide range of environmental features such as the energy consumption inside a building at fine-grained level (e.g., for a specific wall-socket). Some smart buildings already deploy energy monitoring in order to optimize the energy use for good purposes (e.g., to save money, to reduce pollution). Unfortunately, such measurements raise a significant amount of privacy concerns. In this paper, we investigate the feasibility of recognizing the pair laptop-user (i.e., a user using her own laptop) from the energy traces produced by her laptop. We design MTPlug, a framework that achieves this goal relying on supervised machine learning techniques as pattern recognition in multivariate time series. We present a comprehensive implementation of this system and run a thorough set of experiments. In particular, we collected data by monitoring the energy consumption of two groups of laptop users, some office employees and some intruders, for a total of 27 people. We show that our system is able to build an energy profile for a laptop user with accuracy above 80%, in less than 3.5 hours of laptop usage. To the best of our knowledge, this is the first research that assesses the feasibility of laptop users profiling relying uniquely on fine-grained energy traces collected using wall-socket smart meters.

2017-09-19
Djellali, Choukri, Adda, Mehdi.  2016.  A New Scalable Aggregation Scheme for Fuzzy Clustering Taking Unstructured Textual Resources As a Case. Proceedings of the 20th International Database Engineering & Applications Symposium. :199–204.

The performance of clustering is a crucial challenge, especially for pattern recognition. The models aggregation has a positive impact on the efficiency of Data clustering. This technique is used to obtain more cluttered decision boundaries by aggregating the resulting clustering models. In this paper, we study an aggregation scheme to improve the stability and accuracy of clustering, which allows to find a reliable and robust clustering model. We demonstrate the advantages of our aggregation method by running Fuzzy C-Means (FCM) clustering on Reuters-21578 corpus. Experimental studies showed that our scheme optimized the bias-variance on the selected model and achieved enhanced clustering for unstructured textual resources.

2017-04-20
Rashid, Tabish, Agrafiotis, Ioannis, Nurse, Jason R.C..  2016.  A New Take on Detecting Insider Threats: Exploring the Use of Hidden Markov Models. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :47–56.

The threat that malicious insiders pose towards organisations is a significant problem. In this paper, we investigate the task of detecting such insiders through a novel method of modelling a user's normal behaviour in order to detect anomalies in that behaviour which may be indicative of an attack. Specifically, we make use of Hidden Markov Models to learn what constitutes normal behaviour, and then use them to detect significant deviations from that behaviour. Our results show that this approach is indeed successful at detecting insider threats, and in particular is able to accurately learn a user's behaviour. These initial tests improve on existing research and may provide a useful approach in addressing this part of the insider-threat challenge.

2017-09-15
Ahmadi, Mansour, Ulyanov, Dmitry, Semenov, Stanislav, Trofimov, Mikhail, Giacinto, Giorgio.  2016.  Novel Feature Extraction, Selection and Fusion for Effective Malware Family Classification. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :183–194.

Modern malware is designed with mutation characteristics, namely polymorphism and metamorphism, which causes an enormous growth in the number of variants of malware samples. Categorization of malware samples on the basis of their behaviors is essential for the computer security community, because they receive huge number of malware everyday, and the signature extraction process is usually based on malicious parts characterizing malware families. Microsoft released a malware classification challenge in 2015 with a huge dataset of near 0.5 terabytes of data, containing more than 20K malware samples. The analysis of this dataset inspired the development of a novel paradigm that is effective in categorizing malware variants into their actual family groups. This paradigm is presented and discussed in the present paper, where emphasis has been given to the phases related to the extraction, and selection of a set of novel features for the effective representation of malware samples. Features can be grouped according to different characteristics of malware behavior, and their fusion is performed according to a per-class weighting paradigm. The proposed method achieved a very high accuracy (\$\textbackslashapprox\$ 0.998) on the Microsoft Malware Challenge dataset.

2017-07-24
Duggal, Rahul, Gupta, Anubha, Gupta, Ritu, Wadhwa, Manya, Ahuja, Chirag.  2016.  Overlapping Cell Nuclei Segmentation in Microscopic Images Using Deep Belief Networks. Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing. :82:1–82:8.

This paper proposes a method for segmentation of nuclei of single/isolated and overlapping/touching immature white blood cells from microscopic images of B-Lineage acute lymphoblastic leukemia (ALL) prepared from peripheral blood and bone marrow aspirate. We propose deep belief network approach for the segmentation of these nuclei. Simulation results and comparison with some of the existing methods demonstrate the efficacy of the proposed method.

2017-03-07
Urbanowicz, Ryan J., Olson, Randal S., Moore, Jason H..  2016.  Pareto Inspired Multi-objective Rule Fitness for Adaptive Rule-based Machine Learning. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. :1403–1403.

Learning classifier systems (LCSs) are rule-based evolutionary algorithms uniquely suited to classification and data mining in complex, multi-factorial, and heterogeneous problems. LCS rule fitness is commonly based on accuracy, but this metric alone is not ideal for assessing global rule `value' in noisy problem domains, and thus impedes effective knowledge extraction. Multi-objective fitness functions are promising but rely on knowledge of how to weigh objective importance. Prior knowledge would be unavailable in most real-world problems. The Pareto-front concept offers a strategy for multi-objective machine learning that is agnostic to objective importance. We propose a Pareto-inspired multi-objective rule fitness (PIMORF) for LCS, and combine it with a complimentary rule-compaction approach (SRC). We implemented these strategies in ExSTraCS, a successful supervised LCS and evaluated performance over an array of complex simulated noisy and clean problems (i.e. genetic and multiplexer) that each concurrently model pure interaction effects and heterogeneity. While evaluation over multiple performance metrics yielded mixed results, this work represents an important first step towards efficiently learning complex problem spaces without the advantage of prior problem knowledge. Overall the results suggest that PIMORF paired with SRC improved rule set interpretability, particularly with regard to heterogeneous patterns.

2017-05-17
Kumar, Snehasish, Srinivasan, Vijayalakshmi, Sharifian, Amirali, Sumner, Nick, Shriraman, Arrvindh.  2016.  Peruse and Profit: Estimating the Accelerability of Loops. Proceedings of the 2016 International Conference on Supercomputing. :21:1–21:13.

There exist a multitude of execution models available today for a developer to target. The choices vary from general purpose processors to fixed-function hardware accelerators with a large number of variations in-between. There is a growing demand to assess the potential benefits of porting or rewriting an application to a target architecture in order to fully exploit the benefits of performance and/or energy efficiency offered by such targets. However, as a first step of this process, it is necessary to determine whether the application has characteristics suitable for acceleration. In this paper, we present Peruse, a tool to characterize the features of loops in an application and to help the programmer understand the amenability of loops for acceleration. We consider a diverse set of features ranging from loop characteristics (e.g., loop exit points) and operation mixes (e.g., control vs data operations) to wider code region characteristics (e.g., idempotency, vectorizability). Peruse is language, architecture, and input independent and uses the intermediate representation of compilers to do the characterization. Using static analyses makes Peruse scalable and enables analysis of large applications to identify and extract interesting loops suitable for acceleration. We show analysis results for unmodified applications from the SPEC CPU benchmark suite, Polybench, and HPC workloads. For an end-user it is more desirable to get an estimate of the potential speedup due to acceleration. We use the workload characterization results of Peruse as features and develop a machine-learning based model to predict the potential speedup of a loop when off-loaded to a fixed function hardware accelerator. We use the model to predict the speedup of loops selected by Peruse and achieve an accuracy of 79%.

2017-09-15
Tripp, Omer, Pistoia, Marco, Ferrara, Pietro, Rubin, Julia.  2016.  Pinpointing Mobile Malware Using Code Analysis. Proceedings of the International Conference on Mobile Software Engineering and Systems. :275–276.

Mobile malware has recently become an acute problem. Existing solutions either base static reasoning on syntactic properties, such as exception handlers or configuration fields, or compute data-flow reachability over the program, which leads to scalability challenges. We explore a new and complementary category of features, which strikes a middleground between the above two categories. This new category focuses on security-relevant operations (communcation, lifecycle, etc) –- and in particular, their multiplicity and happens-before order –- as a means to distinguish between malicious and benign applications. Computing these features requires semantic, yet lightweight, modeling of the program's behavior. We have created a malware detection system for Android, MassDroid, that collects traces of security-relevant operations from the call graph via a scalable form of data-flow analysis. These are reduced to happens-before and multiplicity features, then fed into a supervised learning engine to obtain a malicious/benign classification. MassDroid also embodies a novel reporting interface, containing pointers into the code that serve as evidence supporting the determination. We have applied MassDroid to 35,000 Android apps from the wild. The results are highly encouraging with an F-score of 95% in standard testing, and textgreater90% when applied to previously unseen malware signatures. MassDroid is also efficient, requiring about two minutes per app. MassDroid is publicly available as a cloud service for malware detection.

2017-11-27
Meng, Q., Shameng, Wen, Chao, Feng, Chaojing, Tang.  2016.  Predicting buffer overflow using semi-supervised learning. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1959–1963.

As everyone knows vulnerability detection is a very difficult and time consuming work, so taking advantage of the unlabeled data sufficiently is needed and helpful. According the above reality, in this paper a method is proposed to predict buffer overflow based on semi-supervised learning. We first employ Antlr to extract AST from C/C++ source files, then according to the 22 buffer overflow attributes taxonomies, a 22-dimension vector is extracted from every function in AST, at last, the vector is leveraged to train a classifier to predict buffer overflow vulnerabilities. The experiment and evaluation indicate our method is correct and efficient.

2017-09-19
Rahbarinia, Babak, Balduzzi, Marco, Perdisci, Roberto.  2016.  Real-Time Detection of Malware Downloads via Large-Scale URL-≫File-≫Machine Graph Mining. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :783–794.

In this paper we propose Mastino, a novel defense system to detect malware download events. A download event is a 3-tuple that identifies the action of downloading a file from a URL that was triggered by a client (machine). Mastino utilizes global situation awareness and continuously monitors various network- and system-level events of the clients' machines across the Internet and provides real time classification of both files and URLs to the clients upon submission of a new, unknown file or URL to the system. To enable detection of the download events, Mastino builds a large download graph that captures the subtle relationships among the entities of download events, i.e. files, URLs, and machines. We implemented a prototype version of Mastino and evaluated it in a large-scale real-world deployment. Our experimental evaluation shows that Mastino can accurately classify malware download events with an average of 95.5% true positive (TP), while incurring less than 0.5% false positives (FP). In addition, we show the Mastino can classify a new download event as either benign or malware in just a fraction of a second, and is therefore suitable as a real time defense system.

2017-06-05
Mirsky, Yisroel, Shabtai, Asaf, Rokach, Lior, Shapira, Bracha, Elovici, Yuval.  2016.  SherLock vs Moriarty: A Smartphone Dataset for Cybersecurity Research. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :1–12.

In this paper we describe and share with the research community, a significant smartphone dataset obtained from an ongoing long-term data collection experiment. The dataset currently contains 10 billion data records from 30 users collected over a period of 1.6 years and an additional 20 users for 6 months (totaling 50 active users currently participating in the experiment). The experiment involves two smartphone agents: SherLock and Moriarty. SherLock collects a wide variety of software and sensor data at a high sample rate. Moriarty perpetrates various attacks on the user and logs its activities, thus providing labels for the SherLock dataset. The primary purpose of the dataset is to help security professionals and academic researchers in developing innovative methods of implicitly detecting malicious behavior in smartphones. Specifically, from data obtainable without superuser (root) privileges. To demonstrate possible uses of the dataset, we perform a basic malware analysis and evaluate a method of continuous user authentication.

2017-04-24
He, Lu, Xu, Chen, Luo, Yan.  2016.  vTC: Machine Learning Based Traffic Classification As a Virtual Network Function. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :53–56.

Network flow classification is fundamental to network management and network security. However, it is challenging to classify network flows at very high line rates while simultaneously preserving user privacy. Machine learning based classification techniques utilize only meta-information of a flow and have been shown to be effective in identifying network flows. We analyze a group of widely used machine learning classifiers, and observe that the effectiveness of different classification models depends highly upon the protocol types as well as the flow features collected from network data.We propose vTC, a design of virtual network functions to flexibly select and apply the best suitable machine learning classifiers at run time. The experimental results show that the proposed NFV for flow classification can improve the accuracy of classification by up to 13%.

2017-03-29
White, Martin, Tufano, Michele, Vendome, Christopher, Poshyvanyk, Denys.  2016.  Deep Learning Code Fragments for Code Clone Detection. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :87–98.

Code clone detection is an important problem for software maintenance and evolution. Many approaches consider either structure or identifiers, but none of the existing detection techniques model both sources of information. These techniques also depend on generic, handcrafted features to represent code fragments. We introduce learning-based detection techniques where everything for representing terms and fragments in source code is mined from the repository. Our code analysis supports a framework, which relies on deep learning, for automatically linking patterns mined at the lexical level with patterns mined at the syntactic level. We evaluated our novel learning-based approach for code clone detection with respect to feasibility from the point of view of software maintainers. We sampled and manually evaluated 398 file- and 480 method-level pairs across eight real-world Java systems; 93% of the file- and method-level samples were evaluated to be true positives. Among the true positives, we found pairs mapping to all four clone types. We compared our approach to a traditional structure-oriented technique and found that our learning-based approach detected clones that were either undetected or suboptimally reported by the prominent tool Deckard. Our results affirm that our learning-based approach is suitable for clone detection and a tenable technique for researchers.

2017-03-07
Kannao, Raghvendra, Guha, Prithwijit.  2016.  Generic TV Advertisement Detection Using Progressively Balanced Perceptron Trees. Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing. :8:1–8:8.

Automatic detection of TV advertisements is of paramount importance for various media monitoring agencies. Existing works in this domain have mostly focused on news channels using news specific features. Most commercial products use near copy detection algorithms instead of generic advertisement classification. A generic detector needs to handle inter-class and intra-class imbalances present in data due to variability in content aired across channels and frequent repetition of advertisements. Imbalances present in data make classifiers biased towards one of the classes and thus require special treatment. We propose to use tree of perceptrons to solve this problem. The training data available for each perceptron node is balanced using cluster based over-sampling and TOMEK link cleaning as we traverse the tree downwards. The trained perceptron node then passes the original unbalanced data to its children. This process is repeated recursively till we reach the leaf nodes. We call this new algorithm as "Progressively Balanced Perceptron Tree". We have also contributed a TV advertisements dataset consisting of 250 hours of videos recorded from five non-news TV channels of different genres. Experimentations on this dataset have shown that the proposed approach has comparatively superior and balanced performance with respect to six baseline methods. Our proposal generalizes well across channels, with varying training data sizes and achieved a top F1-score of 97% in detecting advertisements.

2017-09-15
Tomuro, Noriko, Lytinen, Steven, Hornsburg, Kurt.  2016.  Automatic Summarization of Privacy Policies Using Ensemble Learning. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :133–135.

When customers purchase a product or sign up for service from a company, they often are required to agree to a Privacy Policy or Terms of Service agreement. Many of these policies are lengthy, and a typical customer agrees to them without reading them carefully if at all. To address this problem, we have developed a prototype automatic text summarization system which is specifically designed for privacy policies. Our system generates a summary of a policy statement by identifying important sentences from the statement, categorizing these sentences by which of 5 "statement categories" the sentence addresses, and displaying to a user a list of the sentences which match each category. Our system incorporates keywords identified by a human domain expert and rules that were obtained by machine learning, and they are combined in an ensemble architecture. We have tested our system on a sample corpus of privacy statements, and preliminary results are promising.

2017-05-22
Feng, Qian, Zhou, Rundong, Xu, Chengcheng, Cheng, Yao, Testa, Brian, Yin, Heng.  2016.  Scalable Graph-based Bug Search for Firmware Images. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :480–491.

Because of rampant security breaches in IoT devices, searching vulnerabilities in massive IoT ecosystems is more crucial than ever. Recent studies have demonstrated that control-flow graph (CFG) based bug search techniques can be effective and accurate in IoT devices across different architectures. However, these CFG-based bug search approaches are far from being scalable to handle an enormous amount of IoT devices in the wild, due to their expensive graph matching overhead. Inspired by rich experience in image and video search, we propose a new bug search scheme which addresses the scalability challenge in existing cross-platform bug search techniques and further improves search accuracy. Unlike existing techniques that directly conduct searches based upon raw features (CFGs) from the binary code, we convert the CFGs into high-level numeric feature vectors. Compared with the CFG feature, high-level numeric feature vectors are more robust to code variation across different architectures, and can easily achieve realtime search by using state-of-the-art hashing techniques. We have implemented a bug search engine, Genius, and compared it with state-of-art bug search approaches. Experimental results show that Genius outperforms baseline approaches for various query loads in terms of speed and accuracy. We also evaluated Genius on a real-world dataset of 33,045 devices which was collected from public sources and our system. The experiment showed that Genius can finish a search within 1 second on average when performed over 8,126 firmware images of 420,558,702 functions. By only looking at the top 50 candidates in the search result, we found 38 potentially vulnerable firmware images across 5 vendors, and confirmed 23 of them by our manual analysis. We also found that it took only 0.1 seconds on average to finish searching for all 154 vulnerabilities in two latest commercial firmware images from D-LINK. 103 of them are potentially vulnerable in these images, and 16 of them were confirmed.

2017-03-08
Pisani, P. H., Lorena, A. C., Carvalho, A. C. P. L. F. d.  2015.  Ensemble of Adaptive Algorithms for Keystroke Dynamics. 2015 Brazilian Conference on Intelligent Systems (BRACIS). :310–315.

Biometric systems have been applied to improve the security of several computational systems. These systems analyse physiological or behavioural features obtained from the users in order to perform authentication. Biometric features should ideally meet a number of requirements, including permanence. In biometrics, permanence means that the analysed biometric feature will not change over time. However, recent studies have shown that this is not the case for several biometric modalities. Adaptive biometric systems deal with this issue by adapting the user model over time. Some algorithms for adaptive biometrics have been investigated and compared in the literature. In machine learning, several studies show that the combination of individual techniques in ensembles may lead to more accurate and stable decision models. This paper investigates the usage of some ensemble approaches to combine the output of current adaptive algorithms for biometrics. The experiments are carried out on keystroke dynamics, a biometric modality known to be subject to change over time.

Chi, H., Hu, Y. H..  2015.  Face de-identification using facial identity preserving features. 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :586–590.

Automated human facial image de-identification is a much needed technology for privacy-preserving social media and intelligent surveillance applications. Other than the usual face blurring techniques, in this work, we propose to achieve facial anonymity by slightly modifying existing facial images into "averaged faces" so that the corresponding identities are difficult to uncover. This approach preserves the aesthesis of the facial images while achieving the goal of privacy protection. In particular, we explore a deep learning-based facial identity-preserving (FIP) features. Unlike conventional face descriptors, the FIP features can significantly reduce intra-identity variances, while maintaining inter-identity distinctions. By suppressing and tinkering FIP features, we achieve the goal of k-anonymity facial image de-identification while preserving desired utilities. Using a face database, we successfully demonstrate that the resulting "averaged faces" will still preserve the aesthesis of the original images while defying facial image identity recognition.

2018-07-06
Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha, N. K..  2015.  Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare. IEEE Journal of Biomedical and Health Informatics. 19:1893–1905.

Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.