Biblio
As millions of IoT devices are interconnected together for better communication and computation, compromising even a single device opens a gateway for the adversary to access the network leading to an epidemic. It is pivotal to detect any malicious activity on a device and mitigate the threat. Among multiple feasible security threats, malware (malicious applications) poses a serious risk to modern IoT networks. A wide range of malware can replicate itself and propagate through the network via the underlying connectivity in the IoT networks making the malware epidemic inevitable. There exist several techniques ranging from heuristics to game-theory based technique to model the malware propagation and minimize the impact on the overall network. The state-of-the-art game-theory based approaches solely focus either on the network performance or the malware confinement but does not optimize both simultaneously. In this paper, we propose a throughput-aware game theory-based end-to-end IoT network security framework to confine the malware epidemic while preserving the overall network performance. We propose a two-player game with one player being the attacker and other being the defender. Each player has three different strategies and each strategy leads to a certain gain to that player with an associated cost. A tailored min-max algorithm was introduced to solve the game. We have evaluated our strategy on a 500 node network for different classes of malware and compare with existing state-of-the-art heuristic and game theory-based solutions.
Wearable personal health monitoring systems can offer a cost effective solution for human healthcare. These systems must provide both highly accurate, secured and quick processing and delivery of vast amount of data. In addition, wearable biomedical devices are used in inpatient, outpatient, and at home e-Patient care that must constantly monitor the patient's biomedical and physiological signals 24/7. These biomedical applications require sampling and processing multiple streams of physiological signals with strict power and area footprint. The processing typically consists of feature extraction, data fusion, and classification stages that require a large number of digital signal processing and machine learning kernels. In response to these requirements, in this paper, a low-power, domain-specific many-core accelerator named Power Efficient Nano Clusters (PENC) is proposed to map and execute the kernels of these applications. Experimental results show that the manycore is able to reduce energy consumption by up to 80% and 14% for DSP and machine learning kernels, respectively, when optimally parallelized. The performance of the proposed PENC manycore when acting as a coprocessor to an Intel Atom processor is compared with existing commercial off-the-shelf embedded processing platforms including Intel Atom, Xilinx Artix-7 FPGA, and NVIDIA TK1 ARM-A15 with GPU SoC. The results show that the PENC manycore architecture reduces the energy by as much as 10X while outperforming all off-the-shelf embedded processing platforms across all studied machine learning classifiers.