Biblio

Found 138 results

Filters: Keyword is formal verification  [Clear All Filters]
2020-02-17
Chen, Lu, Ma, Yuanyuan, SHAO, Zhipeng, CHEN, Mu.  2019.  Research on Mobile Application Local Denial of Service Vulnerability Detection Technology Based on Rule Matching. 2019 IEEE International Conference on Energy Internet (ICEI). :585–590.
Aiming at malicious application flooding in mobile application market, this paper proposed a method based on rule matching for mobile application local denial of service vulnerability detection. By combining the advantages of static detection and dynamic detection, static detection adopts smali abstract syntax tree as rule matching object. This static detection method has higher code coverage and better guarantees the integrity of mobile application information. The dynamic detection performs targeted hook verification on the static detection result, which improves the accuracy of the detection result and saves the test workload at the same time. This dynamic detection method has good scalability, can be upgraded with discovery and variants of the vulnerability. Through experiments, it is verified that the mobile application with this vulnerability can be accurately found in a large number of mobile applications, and the effectiveness of the system is verified.
2020-03-16
Goli, Mehran, Drechsler, Rolf.  2019.  Scalable Simulation-Based Verification of SystemC-Based Virtual Prototypes. 2019 22nd Euromicro Conference on Digital System Design (DSD). :522–529.
Virtual Prototypes (VPs) at the Electronic System Level (ESL) written in SystemC language using its Transaction Level Modeling (TLM) framework are increasingly adopted by the semiconductor industry. The main reason is that VPs are much earlier available, and their simulation is orders of magnitude faster in comparison to the hardware models implemented at lower levels of abstraction (e.g. RTL). This leads designers to use VPs as reference models for an early design verification. Hence, the correctness assurance of these reference models (VPs) is critical as undetected faults may propagate to less abstract levels in the design process, increasing the fixing cost and effort. In this paper, we propose a novel simulation-based verification approach to automatically validate the simulation behavior of a given SystemC VP against both the TLM-2.0 rules and its specifications (i.e. functional and timing behavior of communications in the VP). The scalability and the efficiency of the proposed approach are demonstrated using an extensive set of experiments including a real-word VP.
Tan, Jiatong, Feng, Jianhua, Lyu, Yinxuan.  2019.  Stealthy Trojan Detection Based on Feature Analysis of Circuit Structure. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). :1–3.
The design methods and the detection methods for Hardware Trojan develop rapidly. Existing trustiness verification methods are effective to obviously malicious HT but no effect on Stealthy Trojan. Stealthy Trojan is an advanced attack form and hard to be detected. In this paper, we analyze the characteristic of stealthy Trojan and propose a static detection method based on feature analysis. The results on ISCAS benchmarks show that the proposed method can detect the Stealthy Trojan node and is convenient to be implanted into other scalable verification framework.
2020-12-07
Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne, H., Wesemeyer, S..  2019.  A Symbolic Analysis of ECC-Based Direct Anonymous Attestation. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :127–141.
Direct Anonymous Attestation (DAA) is a cryptographic scheme that provides Trusted Platform Module TPM-backed anonymous credentials. We develop Tamarin modelling of the ECC-based version of the protocol as it is standardised and provide the first mechanised analysis of this standard. Our analysis confirms that the scheme is secure when all TPMs are assumed honest, but reveals a break in the protocol's expected authentication and secrecy properties for all TPMs even if only one is compromised. We propose and formally verify a minimal fix to the standard. In addition to developing the first formal analysis of ECC-DAA, the paper contributes to the growing body of work demonstrating the use of formal tools in supporting standardisation processes for cryptographic protocols.
2020-02-10
Chechik, Marsha.  2019.  Uncertain Requirements, Assurance and Machine Learning. 2019 IEEE 27th International Requirements Engineering Conference (RE). :2–3.
From financial services platforms to social networks to vehicle control, software has come to mediate many activities of daily life. Governing bodies and standards organizations have responded to this trend by creating regulations and standards to address issues such as safety, security and privacy. In this environment, the compliance of software development to standards and regulations has emerged as a key requirement. Compliance claims and arguments are often captured in assurance cases, with linked evidence of compliance. Evidence can come from testcases, verification proofs, human judgement, or a combination of these. That is, we try to build (safety-critical) systems carefully according to well justified methods and articulate these justifications in an assurance case that is ultimately judged by a human. Yet software is deeply rooted in uncertainty making pragmatic assurance more inductive than deductive: most of complex open-world functionality is either not completely specifiable (due to uncertainty) or it is not cost-effective to do so, and deductive verification cannot happen without specification. Inductive assurance, achieved by sampling or testing, is easier but generalization from finite set of examples cannot be formally justified. And of course the recent popularity of constructing software via machine learning only worsens the problem - rather than being specified by predefined requirements, machine-learned components learn existing patterns from the available training data, and make predictions for unseen data when deployed. On the surface, this ability is extremely useful for hard-to specify concepts, e.g., the definition of a pedestrian in a pedestrian detection component of a vehicle. On the other, safety assessment and assurance of such components becomes very challenging. In this talk, I focus on two specific approaches to arguing about safety and security of software under uncertainty. The first one is a framework for managing uncertainty in assurance cases (for "conventional" and "machine-learned" systems) by systematically identifying, assessing and addressing it. The second is recent work on supporting development of requirements for machine-learned components in safety-critical domains.
2020-04-03
Künnemann, Robert, Esiyok, Ilkan, Backes, Michael.  2019.  Automated Verification of Accountability in Security Protocols. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :397—39716.

Accountability is a recent paradigm in security protocol design which aims to eliminate traditional trust assumptions on parties and hold them accountable for their misbehavior. It is meant to establish trust in the first place and to recognize and react if this trust is violated. In this work, we discuss a protocol-agnostic definition of accountability: a protocol provides accountability (w.r.t. some security property) if it can identify all misbehaving parties, where misbehavior is defined as a deviation from the protocol that causes a security violation. We provide a mechanized method for the verification of accountability and demonstrate its use for verification and attack finding on various examples from the accountability and causality literature, including Certificate Transparency and Krollˆ\textbackslashtextbackslashprimes Accountable Algorithms protocol. We reach a high degree of automation by expressing accountability in terms of a set of trace properties and show their soundness and completeness.

2019-12-11
Canetti, Ran, Stoughton, Alley, Varia, Mayank.  2019.  EasyUC: Using EasyCrypt to Mechanize Proofs of Universally Composable Security. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :167–16716.

We present a methodology for using the EasyCrypt proof assistant (originally designed for mechanizing the generation of proofs of game-based security of cryptographic schemes and protocols) to mechanize proofs of security of cryptographic protocols within the universally composable (UC) security framework. This allows, for the first time, the mechanization and formal verification of the entire sequence of steps needed for proving simulation-based security in a modular way: Specifying a protocol and the desired ideal functionality; Constructing a simulator and demonstrating its validity, via reduction to hard computational problems; Invoking the universal composition operation and demonstrating that it indeed preserves security. We demonstrate our methodology on a simple example: stating and proving the security of secure message communication via a one-time pad, where the key comes from a Diffie-Hellman key-exchange, assuming ideally authenticated communication. We first put together EasyCrypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-communication functionality. We then mechanically combine the two proofs into an EasyCrypt-verified proof that the composed protocol realizes the same ideal secure-communication functionality. Although formulating a methodology that is both sound and workable has proven to be a complex task, we are hopeful that it will prove to be the basis for mechanized UC security analyses for significantly more complex protocols and tasks.

2019-11-12
Hu, Yayun, Li, Dongfang.  2019.  Formal Verification Technology for Asynchronous Communication Protocol. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :482-486.

For aerospace FPGA software products, traditional simulation method faces severe challenges to verify product requirements under complicated scenarios. Given the increasing maturity of formal verification technology, this method can significantly improve verification work efficiency and product design quality, by expanding coverage on those "blind spots" in product design which were not easily identified previously. Taking UART communication as an example, this paper proposes several critical points to use formal verification for asynchronous communication protocol. Experiments and practices indicate that formal verification for asynchronous communication protocol can effectively reduce the time required, ensure a complete verification process and more importantly, achieve more accurate and intuitive results.

2020-02-26
Danger, Jean-Luc, Fribourg, Laurent, Kühne, Ulrich, Naceur, Maha.  2019.  LAOCOÖN: A Run-Time Monitoring and Verification Approach for Hardware Trojan Detection. 2019 22nd Euromicro Conference on Digital System Design (DSD). :269–276.

Hardware Trojan Horses and active fault attacks are a threat to the safety and security of electronic systems. By such manipulations, an attacker can extract sensitive information or disturb the functionality of a device. Therefore, several protections against malicious inclusions have been devised in recent years. A prominent technique to detect abnormal behavior in the field is run-time verification. It relies on dedicated monitoring circuits and on verification rules generated from a set of temporal properties. An important question when dealing with such protections is the effectiveness of the protection against unknown attacks. In this paper, we present a methodology based on automatic generation of monitoring and formal verification techniques that can be used to validate and analyze the quality of a set of temporal properties when used as protection against generic attackers of variable strengths.

2020-04-03
Ayache, Meryeme, Khoumsi, Ahmed, Erradi, Mohammed.  2019.  Managing Security Policies within Cloud Environments Using Aspect-Oriented State Machines. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1—10.

Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.

2020-06-19
Cha, Suhyun, Ulbrich, Mattias, Weigl, Alexander, Beckert, Bernhard, Land, Kathrin, Vogel-Heuser, Birgit.  2019.  On the Preservation of the Trust by Regression Verification of PLC software for Cyber-Physical Systems of Systems. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:413—418.

Modern large scale technical systems often face iterative changes on their behaviours with the requirement of validated quality which is not easy to achieve completely with traditional testing. Regression verification is a powerful tool for the formal correctness analysis of software-driven systems. By proving that a new revision of the software behaves similarly as the original version of the software, some of the trust that the old software and system had earned during the validation processes or operation histories can be inherited to the new revision. This trust inheritance by the formal analysis relies on a number of implicit assumptions which are not self-evident but easy to miss, and may lead to a false sense of safety induced by a misunderstood regression verification processes. This paper aims at pointing out hidden, implicit assumptions of regression verification in the context of cyber-physical systems by making them explicit using practical examples. The explicit trust inheritance analysis would clarify for the engineers to understand the extent of the trust that regression verification provides and consequently facilitate them to utilize this formal technique for the system validation.

2020-01-21
Tran-Jørgensen, Peter W. V., Kulik, Tomas, Boudjadar, Jalil, Larsen, Peter Gorm.  2019.  Security Analysis of Cloud-Connected Industrial Control Systems Using Combinatorial Testing. Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design. :1–11.

Industrial control systems are moving from monolithic to distributed and cloud-connected architectures, which increases system complexity and vulnerability, thus complicates security analysis. When exhaustive verification accounts for this complexity the state space being sought grows drastically as the system model evolves and more details are considered. Eventually this may lead to state space explosion, which makes exhaustive verification infeasible. To address this, we use VDM-SL's combinatorial testing feature to generate security attacks that are executed against the model to verify whether the system has the desired security properties. We demonstrate our approach using a cloud-connected industrial control system that is responsible for performing safety-critical tasks and handling client requests sent to the control network. Although the approach is not exhaustive it enables verification of mitigation strategies for a large number of attacks and complex systems within reasonable time.

2020-04-03
Nandi, Giann Spilere, Pereira, David, Vigil, Martín, Moraes, Ricardo, Morales, Analúcia Schiaffino, Araújo, Gustavo.  2019.  Security in Wireless Sensor Networks: A formal verification of protocols. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:425—431.

The increase of the digitalization taking place in various industrial domains is leading developers towards the design and implementation of more and more complex networked control systems (NCS) supported by Wireless Sensor Networks (WSN). This naturally raises new challenges for the current WSN technology, namely in what concerns improved guarantees of technical aspects such as real-time communications together with safe and secure transmissions. Notably, in what concerns security aspects, several cryptographic protocols have been proposed. Since the design of these protocols is usually error-prone, security breaches can still be exposed and MALICIOUSly exploited unless they are rigorously analyzed and verified. In this paper we formally verify, using ProVerif, three cryptographic protocols used in WSN, regarding the security properties of secrecy and authenticity. The security analysis performed in this paper is more robust than the ones performed in related work. Our contributions involve analyzing protocols that were modeled considering an unbounded number of participants and actions, and also the use of a hierarchical system to classify the authenticity results. Our verification shows that the three analyzed protocols guarantee secrecy, but can only provide authenticity in specific scenarios.

Fattahi, Jaouhar, Mejri, Mohamed, Pricop, Emil.  2019.  On the Security of Cryptographic Protocols Using the Little Theorem of Witness Functions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1—5.

In this paper, we show how practical the little theorem of witness functions is in detecting security flaws in some categories of cryptographic protocols. We convey a formal analysis of the Needham-Schroeder symmetric-key protocol in the theory of witness functions. We show how it helps to warn about a security vulnerability in a given step of this protocol where the value of security of a sensitive ticket in a sent message unexpectedly decreases compared with its value when received. This vulnerability may be exploited by an intruder to mount a replay attack as described by Denning and Sacco.

2020-09-28
Simos, Dimitris E., Garn, Bernhard, Zivanovic, Jovan, Leithner, Manuel.  2019.  Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
2020-06-26
Puccetti, Armand.  2019.  The European H2020 project VESSEDIA (Verification Engineering of Safety and SEcurity critical Dynamic Industrial Applications). 2019 22nd Euromicro Conference on Digital System Design (DSD). :588—591.

This paper presents an overview of the H2020 project VESSEDIA [9] aimed at verifying the security and safety of modern connected systems also called IoT. The originality relies in using Formal Methods inherited from high-criticality applications domains to analyze the source code at different levels of intensity, to gather possible faults and weaknesses. The analysis methods are mostly exhaustive an guarantee that, after analysis, the source code of the application is error-free. This paper is structured as follows: after an introductory section 1 giving some factual data, section 2 presents the aims and the problems addressed; section 3 describes the project's use-cases and section 4 describes the proposed approach for solving these problems and the results achieved until now; finally, section 5 discusses some remaining future work.

2020-02-10
Todorov, Vassil, Taha, Safouan, Boulanger, Frédéric, Hernandez, Armando.  2019.  Improved Invariant Generation for Industrial Software Model Checking of Time Properties. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). :334–341.
Modern automotive embedded software is mostly designed using model-based design tools such as Simulink or SCADE, and source code is generated automatically from the models. Formal proof using symbolic model checking has been integrated in these tools and can provide a higher assurance by proving safety-critical properties. Our experience shows that proving properties involving time is rather challenging when they involve long durations and timers. These properties are generally not inductive and even advanced techniques such as PDR/IC3 are unable to handle them on production models in reasonable time. In this paper, we first present our industrial use case and comment on the results obtained with the existing model checkers. Then we present our invariant generator and methodology for selecting invariants according to physical dimensions. They enable the proof of properties with long-running timers. Finally, we discuss their implementation and benchmarks.
2020-07-10
Zhang, Mengyu, Zhang, Hecan, Yang, Yahui, Shen, Qingni.  2019.  PTAD:Provable and Traceable Assured Deletion in Cloud Storage. 2019 IEEE Symposium on Computers and Communications (ISCC). :1—6.

As an efficient deletion method, unlinking is widely used in cloud storage. While unlinking is a kind of incomplete deletion, `deleted data' remains on cloud and can be recovered. To make `deleted data' unrecoverable, overwriting is an effective method on cloud. Users lose control over their data on cloud once deleted, so it is difficult for them to confirm overwriting. In face of such a crucial problem, we propose a Provable and Traceable Assured Deletion (PTAD) scheme in cloud storage based on blockchain. PTAD scheme relies on overwriting to achieve assured deletion. We reference the idea of data integrity checking and design algorithms to verify if cloud overwrites original blocks properly as specific patterns. We utilize technique of smart contract in blockchain to automatically execute verification and keep transaction in ledger for tracking. The whole scheme can be divided into three stages-unlinking, overwriting and verification-and we design one specific algorithm for each stage. For evaluation, we implement PTAD scheme on cloud and construct a consortium chain with Hyperledger Fabric. The performance shows that PTAD scheme is effective and feasible.

2019-11-12
Mahale, Anusha, B.S., Kariyappa.  2019.  Architecture Analysis and Verification of I3C Protocol. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :930-935.

In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.

2020-04-03
Cheang, Kevin, Rasmussen, Cameron, Seshia, Sanjit, Subramanyan, Pramod.  2019.  A Formal Approach to Secure Speculation. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :288—28815.
Transient execution attacks like Spectre, Meltdown and Foreshadow have shown that combinations of microarchitectural side-channels can be synergistically exploited to create side-channel leaks that are greater than the sum of their parts. While both hardware and software mitigations have been proposed against these attacks, provable security has remained elusive. This paper introduces a formal methodology for enabling secure speculative execution on modern processors. We propose a new class of information flow security properties called trace property-dependent observational determinism (TPOD). We use this class to formulate a secure speculation property. Our formulation precisely characterises all transient execution vulnerabilities. We demonstrate its applicability by verifying secure speculation for several illustrative programs.
2020-09-14
Lochbihler, Andreas, Sefidgar, S. Reza, Basin, David, Maurer, Ueli.  2019.  Formalizing Constructive Cryptography using CryptHOL. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :152–15214.
Computer-aided cryptography increases the rigour of cryptographic proofs by mechanizing their verification. Existing tools focus mainly on game-based proofs, and efforts to formalize composable frameworks such as Universal Composability have met with limited success. In this paper, we formalize an instance of Constructive Cryptography, a generic theory allowing for clean, composable cryptographic security statements. Namely, we extend CryptHOL, a framework for game-based proofs, with an abstract model of Random Systems and provide proof rules for their equality and composition. We formalize security as a special kind of system construction in which a complex system is built from simpler ones. As a simple case study, we formalize the construction of an information-theoretically secure channel from a key, a random function, and an insecure channel.
2020-03-16
White, Ruffin, Caiazza, Gianluca, Jiang, Chenxu, Ou, Xinyue, Yang, Zhiyue, Cortesi, Agostino, Christensen, Henrik.  2019.  Network Reconnaissance and Vulnerability Excavation of Secure DDS Systems. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :57–66.

Data Distribution Service (DDS) is a realtime peer-to-peer protocol that serves as a scalable middleware between distributed networked systems found in many Industrial IoT domains such as automotive, medical, energy, and defense. Since the initial ratification of the standard, specifications have introduced a Security Model and Service Plugin Interface (SPI) architecture, facilitating authenticated encryption and data centric access control while preserving interoperable data exchange. However, as Secure DDS v1.1, the default plugin specifications presently exchanges digitally signed capability lists of both participants in the clear during the crypto handshake for permission attestation; thus breaching confidentiality of the context of the connection. In this work, we present an attacker model that makes use of network reconnaissance afforded by this leaked context in conjunction with formal verification and model checking to arbitrarily reason about the underlying topology and reachability of information flow, enabling targeted attacks such as selective denial of service, adversarial partitioning of the data bus, or vulnerability excavation of vendor implementations.

2020-10-26
Criswell, John, Zhou, Jie, Gravani, Spyridoula, Hu, Xiaoyu.  2019.  PrivAnalyzer: Measuring the Efficacy of Linux Privilege Use. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :593–604.
Operating systems such as Linux break the power of the root user into separate privileges (which Linux calls capabilities) and give processes the ability to enable privileges only when needed and to discard them permanently when the program no longer needs them. However, there is no method of measuring how well the use of such facilities reduces the risk of privilege escalation attacks if the program has a vulnerability. This paper presents PrivAnalyzer, an automated tool that measures how effectively programs use Linux privileges. PrivAnalyzer consists of three components: 1) AutoPriv, an existing LLVM-based C/C++ compiler which uses static analysis to transform a program that uses Linux privileges into a program that safely removes them when no longer needed, 2) ChronoPriv, a new LLVM C/C++ compiler pass that performs dynamic analysis to determine for how long a program retains various privileges, and 3) ROSA, a new bounded model checker that can model the damage a program can do at each program point if an attacker can exploit the program and abuse its privileges. We use PrivAnalyzer to determine how long five privileged open source programs retain the ability to cause serious damage to a system and find that merely transforming a program to drop privileges does not significantly improve security. However, we find that simple refactoring can considerably increase the efficacy of Linux privileges. In two programs that we refactored, we reduced the percentage of execution in which a device file can be read and written from 97% and 88% to 4% and 1%, respectively.
2020-04-03
Aires Urquiza, Abraão, AlTurki, Musab A., Kanovich, Max, Ban Kirigin, Tajana, Nigam, Vivek, Scedrov, Andre, Talcott, Carolyn.  2019.  Resource-Bounded Intruders in Denial of Service Attacks. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :382—38214.

Denial of Service (DoS) attacks have been a serious security concern, as no service is, in principle, protected against them. Although a Dolev-Yao intruder with unlimited resources can trivially render any service unavailable, DoS attacks do not necessarily have to be carried out by such (extremely) powerful intruders. It is useful in practice and more challenging for formal protocol verification to determine whether a service is vulnerable even to resource-bounded intruders that cannot generate or intercept arbitrary large volumes of traffic. This paper proposes a novel, more refined intruder model where the intruder can only consume at most some specified amount of resources in any given time window. Additionally, we propose protocol theories that may contain timeouts and specify service resource usage during protocol execution. In contrast to the existing resource-conscious protocol verification models, our model allows finer and more subtle analysis of DoS problems. We illustrate the power of our approach by representing a number of classes of DoS attacks, such as, Slow, Asymmetric and Amplification DoS attacks, exhausting different types of resources of the target, such as, number of workers, processing power, memory, and network bandwidth. We show that the proposed DoS problem is undecidable in general and is PSPACE-complete for the class of resource-bounded, balanced systems. Finally, we implemented our formal verification model in the rewriting logic tool Maude and analyzed a number of DoS attacks in Maude using Rewriting Modulo SMT in an automated fashion.

2020-07-16
Yuan, Haoxuan, Li, Fang, Huang, Xin.  2019.  A Formal Modeling and Verification Framework for Service Oriented Intelligent Production Line Design. 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS). :173—178.

The intelligent production line is a complex application with a large number of independent equipment network integration. In view of the characteristics of CPS, the existing modeling methods cannot well meet the application requirements of large scale high-performance system. a formal simulation verification framework and verification method are designed for the performance constraints such as the real-time and security of the intelligent production line based on soft bus. A model-based service-oriented integration approach is employed, which adopts a model-centric way to automate the development course of the entire software life cycle. Developing experience indicate that the proposed approach based on the formal modeling and verification framework in this paper can improve the performance of the system, which is also helpful to achieve the balance of the production line and maintain the reasonable use rate of the processing equipment.