Biblio

Found 1589 results

Filters: Keyword is cryptography  [Clear All Filters]
2020-07-20
Shi, Yang, Wang, Xiaoping, Fan, Hongfei.  2017.  Light-weight white-box encryption scheme with random padding for wearable consumer electronic devices. IEEE Transactions on Consumer Electronics. 63:44–52.
Wearable devices can be potentially captured or accessed in an unauthorized manner because of their physical nature. In such cases, they are in white-box attack contexts, where the adversary may have total visibility on the implementation of the built-in cryptosystem, with full control over its execution platform. Dealing with white-box attacks on wearable devices is undoubtedly a challenge. To serve as a countermeasure against threats in such contexts, we propose a lightweight encryption scheme to protect the confidentiality of data against white-box attacks. We constructed the scheme's encryption and decryption algorithms on a substitution-permutation network that consisted of random secret components. Moreover, the encryption algorithm uses random padding that does not need to be correctly decrypted as part of the input. This feature enables non-bijective linear transformations to be used in each encryption round to achieve strong security. The required storage for static data is relatively small and the algorithms perform well on various devices, which indicates that the proposed scheme satisfies the requirements of wearable computing in terms of limited memory and low computational power.
2018-03-19
Ukwandu, E., Buchanan, W. J., Russell, G..  2017.  Performance Evaluation of a Fragmented Secret Share System. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
There are many risks in moving data into public storage environments, along with an increasing threat around large-scale data leakage. Secret sharing scheme has been proposed as a keyless and resilient mechanism to mitigate this, but scaling through large scale data infrastructure has remained the bane of using secret sharing scheme in big data storage and retrievals. This work applies secret sharing methods as used in cryptography to create robust and secure data storage and retrievals in conjunction with data fragmentation. It outlines two different methods of distributing data equally to storage locations as well as recovering them in such a manner that ensures consistent data availability irrespective of file size and type. Our experiments consist of two different methods - data and key shares. Using our experimental results, we were able to validate previous works on the effects of threshold on file recovery. Results obtained also revealed the varying effects of share writing to and retrieval from storage locations other than computer memory. The implication is that increase in fragment size at varying file and threshold sizes rather than add overheads to file recovery, do so on creation instead, underscoring the importance of choosing a varying fragment size as file size increases.
2018-06-11
Silva, B., Sabino, A., Junior, W., Oliveira, E., Júnior, F., Dias, K..  2017.  Performance Evaluation of Cryptography on Middleware-Based Computational Offloading. 2017 VII Brazilian Symposium on Computing Systems Engineering (SBESC). :205–210.
Mobile cloud computing paradigm enables cloud servers to extend the limited hardware resources of mobile devices improving availability and reliability of the services provided. Consequently, private, financial, business and critical data pass through wireless access media exposed to malicious attacks. Mobile cloud infrastructure requires new security mechanisms, at the same time as offloading operations need to maintain the advantages of saving processing and energy of the device. Thus, this paper implements a middleware-based computational offloading with cryptographic algorithms and evaluates two mechanisms (symmetric and asymmetric), to provide the integrity and authenticity of data that a smartphone offloads to mobile cloud servers. Also, the paper discusses the factors that impact on power consumption and performance on smartphones that's run resource-intensive applications.
2018-08-23
Blenn, Norbert, Ghiëtte, Vincent, Doerr, Christian.  2017.  Quantifying the Spectrum of Denial-of-Service Attacks Through Internet Backscatter. Proceedings of the 12th International Conference on Availability, Reliability and Security. :21:1–21:10.
Denial of Service (DoS) attacks are a major threat currently observable in computer networks and especially the Internet. In such an attack a malicious party tries to either break a service, running on a server, or exhaust the capacity or bandwidth of the victim to hinder customers to effectively use the service. Recent reports show that the total number of Distributed Denial of Service (DDoS) attacks is steadily growing with "mega-attacks" peaking at hundreds of gigabit/s (Gbps). In this paper, we will provide a quantification of DDoS attacks in size and duration beyond these outliers reported in the media. We find that these mega attacks do exist, but the bulk of attacks is in practice only a fraction of these frequently reported values. We further show that it is feasible to collect meaningful backscatter traces using surprisingly small telescopes, thereby enabling a broader audience to perform attack intelligence research.
2018-03-19
Rawal, B. S., Vivek, S. S..  2017.  Secure Cloud Storage and File Sharing. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :78–83.
Internet-based online cloud services provide enormous volumes of storage space, tailor made computing resources and eradicates the obligation of native machines for data maintenance as well. Cloud storage service providers claim to offer the ability of secure and elastic data-storage services that can adapt to various storage necessities. Most of the security tools have a finite rate of failure, and intrusion comes with more complex and sophisticated techniques; the security failure rates are skyrocketing. Once we upload our data into the cloud, we lose control of our data, which certainly brings new security risks toward integrity and confidentiality of our data. In this paper, we discuss a secure file sharing mechanism for the cloud with the disintegration protocol (DIP). The paper also introduces new contribution of seamless file sharing technique among different clouds without sharing an encryption key.
2018-05-30
Koziel, B., Azarderakhsh, R., Jao, D..  2017.  On Secure Implementations of Quantum-Resistant Supersingular Isogeny Diffie-Hellman. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :160–160.
In this work, we analyze the feasibility of a physically secure implementation of the quantum-resistant supersingular isogeny Diffie-Hellman (SIDH) protocol. Notably, we analyze the defense against timing attacks, simple power analysis, differential power analysis, and fault attacks. Luckily, the SIDH protocol closely resembles its predecessor, the elliptic curve Diffie-Hellman (ECDH) key exchange. As such, much of the extensive literature in side-channel analysis can also apply to SIDH. In particular, we focus on a hardware implementation that features a true random number generator, ALU, and controller. SIDH is composed of two rounds containing a double-point multiplication to generate a secret kernel point and an isogeny over that kernel to arrive at a new elliptic curve isomorphism. To protect against simple power analysis and timing attacks, we recommend a constant-time implementation with Fermat's little theorem inversion. Differential power analysis targets the power output of the SIDH core over many runs. As such, we recommend scaling the base points by secret scalars so that each iteration has a unique power signature. Further, based on recent oracle attacks on SIDH, we cannot recommend the use of static keys from both parties. The goal of this paper is to analyze the tradeoffs in elliptic curve theory to produce a cryptographically and physically secure implementation of SIDH.
2018-03-19
Jacob, C., Rekha, V. R..  2017.  Secured and Reliable File Sharing System with De-Duplication Using Erasure Correction Code. 2017 International Conference on Networks Advances in Computational Technologies (NetACT). :221–228.
An effective storage and management of file systems is very much essential now a days to avoid the wastage of storage space provided by the cloud providers. Data de-duplication technique has been used widely which allows only to store a single copy of a file and thus avoids duplication of file in the cloud storage servers. It helps to reduce the amount of storage space and save bandwidth of cloud service and thus in high cost savings for the cloud service subscribers. Today data that we need to store are in encrypted format to ensure the security. So data encryption by data owners with their own keys makes the de-duplication impossible for the cloud service subscriber as the data encryption with a key converts data into an unidentifiable format called cipher text thus encrypting, even the same data, with different keys may result in different cipher texts. But de-duplication and encryption need to work in hand to hand to ensure secure, authorized and optimized storage. In this paper, we propose a scheme for file-level de-duplication on encrypted files like text, images and even on video files stored in cloud based on the user's privilege set and file privilege set. This paper proposed a de-duplication system which distributes the files across different servers. The system uses an Erasure Correcting Code technique to re-construct the files even if the parts of the files are lost by attacking any server. Thus the proposed system can ensure both the security and reliability of encrypted files.
2018-02-14
Kravitz, D. W., Cooper, J..  2017.  Securing user identity and transactions symbiotically: IoT meets blockchain. 2017 Global Internet of Things Summit (GIoTS). :1–6.
Swarms of embedded devices provide new challenges for privacy and security. We propose Permissioned Blockchains as an effective way to secure and manage these systems of systems. A long view of blockchain technology yields several requirements absent in extant blockchain implementations. Our approach to Permissioned Blockchains meets the fundamental requirements for longevity, agility, and incremental adoption. Distributed Identity Management is an inherent feature of our Permissioned Blockchain and provides for resilient user and device identity and attribute management.
2018-09-05
Buttigieg, R., Farrugia, M., Meli, C..  2017.  Security issues in controller area networks in automobiles. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :93–98.
Modern vehicles may contain a considerable number of ECUs (Electronic Control Units) which are connected through various means of communication, with the CAN (Controller Area Network) protocol being the most widely used. However, several vulnerabilities such as the lack of authentication and the lack of data encryption have been pointed out by several authors, which ultimately render vehicles unsafe to their users and surroundings. Moreover, the lack of security in modern automobiles has been studied and analyzed by other researchers as well as several reports about modern car hacking have (already) been published. The contribution of this work aimed to analyze and test the level of security and how resilient is the CAN protocol by taking a BMW E90 (3-series) instrument cluster as a sample for a proof of concept study. This investigation was carried out by building and developing a rogue device using cheap commercially available components while being connected to the same CAN-Bus as a man in the middle device in order to send spoofed messages to the instrument cluster.
2018-06-11
Liu, Y., Briones, J., Zhou, R., Magotra, N..  2017.  Study of secure boot with a FPGA-based IoT device. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1053–1056.
Internet of Things (loT) is network connected “Things” such as vehicles, buildings, embedded systems, sensors, as well as people. IoT enables these objects to collect and exchange data of interest to complete various tasks including patient health monitoring, environmental monitoring, system condition prognostics and prediction, smart grid, smart buildings, smart cities, and do on. Due to the large scale of and the limited host processor computation power in an IoT system, effective security provisioning is shifting from software-based security implementation to hardware-based security implementation in terms of efficiency and effectiveness. Moreover, FPGA can take over the work of infrastructure components to preserve and protect critical components and minimize the negative impacts on these components. In this paper, we employ Xilinx Zynq-7000 Series System-on-Chip (SoC) ZC706 prototype board to design an IoT device. To defend against threats to FPGA design, we have studied Zynq-ZC706 to (1) encrypt FPGA bitstream to protect the IoT device from bitstream decoding; (2) encrypt system boot image to enhance system security; and (3) ensure the FPGA operates correctly as intended via authentication to avoid spoofing and Trojan Horse attacks.
2018-08-23
Belk, Marios, Pamboris, Andreas, Fidas, Christos, Katsini, Christina, Avouris, Nikolaos, Samaras, George.  2017.  Sweet-spotting Security and Usability for Intelligent Graphical Authentication Mechanisms. Proceedings of the International Conference on Web Intelligence. :252–259.
This paper investigates the trade-off between security and usability in recognition-based graphical authentication mechanisms. Through a user study (N=103) based on a real usage scenario, it draws insights about the security strength and memorability of a chosen password with respect to the amount of images presented to users during sign-up. In particular, it reveals the users' predisposition in following predictable patterns when selecting graphical passwords, and its effect on practical security strength. It also demonstrates that a "sweet-spot" exists between security and usability in graphical authentication approaches on the basis of adjusting accordingly the image grid size presented to users when creating passwords. The results of the study can be leveraged by researchers and practitioners engaged in designing intelligent graphical authentication user interfaces for striking an appropriate balance between security and usability.
2020-07-20
Komargodski, Ilan, Naor, Moni, Yogev, Eylon.  2017.  White-Box vs. Black-Box Complexity of Search Problems: Ramsey and Graph Property Testing. 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). :622–632.
Ramsey theory assures us that in any graph there is a clique or independent set of a certain size, roughly logarithmic in the graph size. But how difficult is it to find the clique or independent set? If the graph is given explicitly, then it is possible to do so while examining a linear number of edges. If the graph is given by a black-box, where to figure out whether a certain edge exists the box should be queried, then a large number of queries must be issued. But what if one is given a program or circuit for computing the existence of an edge? This problem was raised by Buss and Goldberg and Papadimitriou in the context of TFNP, search problems with a guaranteed solution. We examine the relationship between black-box complexity and white-box complexity for search problems with guaranteed solution such as the above Ramsey problem. We show that under the assumption that collision resistant hash function exist (which follows from the hardness of problems such as factoring, discrete-log and learning with errors) the white-box Ramsey problem is hard and this is true even if one is looking for a much smaller clique or independent set than the theorem guarantees. In general, one cannot hope to translate all black-box hardness for TFNP into white-box hardness: we show this by adapting results concerning the random oracle methodology and the impossibility of instantiating it. Another model we consider is the succinct black-box, where there is a known upper bound on the size of the black-box (but no limit on the computation time). In this case we show that for all TFNP problems there is an upper bound on the number of queries proportional to the description size of the box times the solution size. On the other hand, for promise problems this is not the case. Finally, we consider the complexity of graph property testing in the white-box model. We show a property which is hard to test even when one is given the program for computing the graph. The hard property is whether the graph is a two-source extractor.
Sima, Mihai, Brisson, André.  2017.  Whitenoise encryption implementation with increased robustness to side-channel attacks. 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1–4.
Two design techniques improve the robustness of Whitenoise encryption algorithm implementation to side-channel attacks based on dynamic and/or static power consumption. The first technique conceals the power consumption and has linear cost. The second technique randomizes the power consumption and has quadratic cost. These techniques are not mutually exclusive; their synergy provides a good robustness to power analysis attacks. Other circuit-level protection can be applied on top of the proposed techniques, opening the avenue for generating very robust implementations.
2018-02-06
Badii, A., Faulkner, R., Raval, R., Glackin, C., Chollet, G..  2017.  Accelerated Encryption Algorithms for Secure Storage and Processing in the Cloud. 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). :1–6.

The objective of this paper is to outline the design specification, implementation and evaluation of a proposed accelerated encryption framework which deploys both homomorphic and symmetric-key encryptions to serve the privacy preserving processing; in particular, as a sub-system within the Privacy Preserving Speech Processing framework architecture as part of the PPSP-in-Cloud Platform. Following a preliminary study of GPU efficiency gains optimisations benchmarked for AES implementation we have addressed and resolved the Big Integer processing challenges in parallel implementation of bilinear pairing thus enabling the creation of partially homomorphic encryption schemes which facilitates applications such as speech processing in the encrypted domain on the cloud. This novel implementation has been validated in laboratory tests using a standard speech corpus and can be used for other application domains to support secure computation and privacy preserving big data storage/processing in the cloud.

2018-04-02
Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov, S..  2017.  Accumulators with Applications to Anonymity-Preserving Revocation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :301–315.

Membership revocation is essential for cryptographic applications, from traditional PKIs to group signatures and anonymous credentials. Of the various solutions for the revocation problem that have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new, RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction of Braavos we use a modular approach: we show how to build an accumulator with better functionality and security from accumulators with fewer features and weaker security guarantees. We then describe an anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC can be added to any anonymous system, such as anonymous credentials or group signatures, in order to equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix, the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of practical revocation for anonymous credential systems.

2017-12-12
Praveena, A..  2017.  Achieving data security in wireless sensor networks using ultra encryption standard version \#x2014; IV algorithm. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). :1–5.

Nowadays wireless networks are fast, becoming more secure than their wired counterparts. Recent technological advances in wireless networking, IC fabrication and sensor technology have lead to the emergence of millimetre scale devices that collectively form a Wireless Sensor Network (WSN) and are radically changing the way in which we sense, process and transport signals of interest. They are increasingly become viable solutions to many challenging problems and will successively be deployed in many areas in the future such as in environmental monitoring, business, and military applications. However, deploying new technology, without security in mind has often proved to be unreasonably dangerous. This also applies to WSNs, especially those used in applications that monitor sensitive information (e.g., health care applications). There have been significant contributions to overcome many weaknesses in sensor networks like coverage problems, lack in power and making best use of limited network bandwidth, however; work in sensor network security is still in its infancy stage. Security in WSNs presents several well-known challenges stemming from all kinds of resource constraints of individual sensors. The problem of securing these networks emerges more and more as a hot topic. Symmetric key cryptography is commonly seen as infeasible and public key cryptography has its own key distribution problem. In contrast to this prejudice, this paper presents a new symmetric encryption standard algorithm which is an extension of the previous work of the authors i.e. UES version-II and III. Roy et al recently developed few efficient encryption methods such as UES version-I, Modified UES-I, UES version-II, UES version-III. The algorithm is named as Ultra Encryption Standard version — IV algorithm. It is a Symmetric key Cryptosystem which includes multiple encryption, bit-wise reshuffling method and bit-wise columnar transposition method. In the present - ork the authors have performed the encryption process at the bit-level to achieve greater strength of encryption. The proposed method i.e. UES-IV can be used to encrypt short message, password or any confidential key.

2018-01-23
Malathi, V., Balamurugan, B., Eshwar, S..  2017.  Achieving Privacy and Security Using QR Code by Means of Encryption Technique in ATM. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :281–285.

Smart Card has complications with validation and transmission process. Therefore, by using peeping attack, the secret code was stolen and secret filming while entering Personal Identification Number at the ATM machine. We intend to develop an authentication system to banks that protects the asset of user's. The data of a user is to be ensured that secure and isolated from the data leakage and other attacks Therefore, we propose a system, where ATM machine will have a QR code in which the information's are encrypted corresponding to the ATM machine and a mobile application in the customer's mobile which will decrypt the encoded QR information and sends the information to the server and user's details are displayed in the ATM machine and transaction can be done. Now, the user securely enters information to transfer money without risk of peeping attack in Automated Teller Machine by just scanning the QR code at the ATM by mobile application. Here, both the encryption and decryption technique are carried out by using Triple DES Algorithm (Data Encryption Standard).

Mathew, S., Saranya, G..  2017.  Advanced biometric home security system using digital signature and DNA cryptography. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). :1–4.

In today's growing concern for home security, we have developed an advanced security system using integrated digital signature and DNA cryptography. The digital signature is formed using multi-feature biometric traits which includes both fingerprint as well as iris image. We further increase the security by using DNA cryptography which is embedded on a smart card. In order to prevent unauthorized access manually or digitally, we use geo-detection which compares the unregistered devices location with the user's location using any of their personal devices such as smart phone or tab.

2018-04-11
K, S. K., Sahoo, S., Mahapatra, A., Swain, A. K., Mahapatra, K. K..  2017.  Analysis of Side-Channel Attack AES Hardware Trojan Benchmarks against Countermeasures. 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :574–579.

Hardware Trojan (HT) is one of the well known hardware security issue in research community in last one decade. HT research is mainly focused on HT detection, HT defense and designing novel HT's. HT's are inserted by an adversary for leaking secret data, denial of service attacks etc. Trojan benchmark circuits for processors, cryptography and communication protocols from Trust-hub are widely used in HT research. And power analysis based side channel attacks and designing countermeasures against side channel attacks is a well established research area. Trust-Hub provides a power based side-channel attack promoting Advanced Encryption Standard (AES) HT benchmarks for research. In this work, we analyze the strength of AES HT benchmarks in the presence well known side-channel attack countermeasures. Masking, Random delay insertion and tweaking the operating frequency of clock used in sensitive operations are applied on AES benchmarks. Simulation and power profiling studies confirm that side-channel promoting HT benchmarks are resilient against these selected countermeasures and even in the presence of these countermeasures; an adversary can get the sensitive data by triggering the HT.

2018-06-11
Balaji, V. S., Reebha, S. A. A. B., Saravanan, D..  2017.  Audit-based efficient accountability for node misbehavior in wireless sensor network. 2017 International Conference on IoT and Application (ICIOT). :1–10.

Wireless sensor network operate on the basic underlying assumption that all participating nodes fully collaborate in self-organizing functions. However, performing network functions consumes energy and other resources. Therefore, some network nodes may decide against cooperating with others. Node misbehavior due to selfish or malicious reasons or faulty nodes can significantly degrade the performance of mobile ad-hoc networks. To cope with misbehavior in such self-organized networks, nodes need to be able to automatically adapt their strategy to changing levels of cooperation. The problem of identifying and isolating misbehaving nodes that refuses to forward packets in multi-hop ad hoc networks. a comprehensive system called Audit-based Misbehavior Detection (AMD) that effectively and efficiently isolates both continuous and selective packet droppers. The AMD system integrates reputation management, trustworthy route discovery, and identification of misbehaving nodes based on behavioral audits. AMD evaluates node behavior on a per-packet basis, without employing energy-expensive overhearing techniques or intensive acknowledgment schemes. AMD can detect selective dropping attacks even if end-to-end traffic is encrypted and can be applied to multi-channel networks.

2018-05-24
Kobeissi, N., Bhargavan, K., Blanchet, B..  2017.  Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :435–450.

Many popular web applications incorporate end-toend secure messaging protocols, which seek to ensure that messages sent between users are kept confidential and authenticated, even if the web application's servers are broken into or otherwise compelled into releasing all their data. Protocols that promise such strong security guarantees should be held up to rigorous analysis, since protocol flaws and implementations bugs can easily lead to real-world attacks. We propose a novel methodology that allows protocol designers, implementers, and security analysts to collaboratively verify a protocol using automated tools. The protocol is implemented in ProScript, a new domain-specific language that is designed for writing cryptographic protocol code that can both be executed within JavaScript programs and automatically translated to a readable model in the applied pi calculus. This model can then be analyzed symbolically using ProVerif to find attacks in a variety of threat models. The model can also be used as the basis of a computational proof using CryptoVerif, which reduces the security of the protocol to standard cryptographic assumptions. If ProVerif finds an attack, or if the CryptoVerif proof reveals a weakness, the protocol designer modifies the ProScript protocol code and regenerates the model to enable a new analysis. We demonstrate our methodology by implementing and analyzing a variant of the popular Signal Protocol with only minor differences. We use ProVerif and CryptoVerif to find new and previously-known weaknesses in the protocol and suggest practical countermeasures. Our ProScript protocol code is incorporated within the current release of Cryptocat, a desktop secure messenger application written in JavaScript. Our results indicate that, with disciplined programming and some verification expertise, the systematic analysis of complex cryptographic web applications is now becoming practical.

2018-04-11
Khalid, F., Hasan, S. R., Hasan, O., Awwadl, F..  2017.  Behavior Profiling of Power Distribution Networks for Runtime Hardware Trojan Detection. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1316–1319.

Runtime hardware Trojan detection techniques are required in third party IP based SoCs as a last line of defense. Traditional techniques rely on golden data model or exotic signal processing techniques such as utilizing Choas theory or machine learning. Due to cumbersome implementation of such techniques, it is highly impractical to embed them on the hardware, which is a requirement in some mission critical applications. In this paper, we propose a methodology that generates a digital power profile during the manufacturing test phase of the circuit under test. A simple processing mechanism, which requires minimal computation of measured power signals, is proposed. For the proof of concept, we have applied the proposed methodology on a classical Advanced Encryption Standard circuit with 21 available Trojans. The experimental results show that the proposed methodology is able to detect 75% of the intrusions with the potential of implementing the detection mechanism on-chip with minimal overhead compared to the state-of-the-art techniques.

2018-02-06
Zebboudj, S., Brahami, R., Mouzaia, C., Abbas, C., Boussaid, N., Omar, M..  2017.  Big Data Source Location Privacy and Access Control in the Framework of IoT. 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). :1–5.

In the recent years, we have observed the development of several connected and mobile devices intended for daily use. This development has come with many risks that might not be perceived by the users. These threats are compromising when an unauthorized entity has access to private big data generated through the user objects in the Internet of Things. In the literature, many solutions have been proposed in order to protect the big data, but the security remains a challenging issue. This work is carried out with the aim to provide a solution to the access control to the big data and securing the localization of their generator objects. The proposed models are based on Attribute Based Encryption, CHORD protocol and $μ$TESLA. Through simulations, we compare our solutions to concurrent protocols and we show its efficiency in terms of relevant criteria.

2018-11-14
Magyar, G..  2017.  Blockchain: Solving the Privacy and Research Availability Tradeoff for EHR Data: A New Disruptive Technology in Health Data Management. 2017 IEEE 30th Neumann Colloquium (NC). :000135–000140.

A blockchain powered Health information ecosystem can solve a frequently discussed problem of the lifelong recorded patient health data, which seriously could hurdle the privacy of the patients and the growing data hunger of the research and policy maker institutions. On one side the general availability of the data is vital in emergency situations and supports heavily the different research, population health management and development activities, on the other side using the same data can lead to serious social and ethical problems caused by malicious actors. Currently, the regulation of the privacy data varies all over the world, however underlying principles are always defensive and protective towards patient privacy against general availability. The protective principles cause a defensive, data hiding attitude of the health system developers to avoid breaching the overall law regulations. It makes the policy makers and different - primarily drug - developers to find ways to treat data such a way that lead to ethical and political debates. In our paper we introduce how the blockchain technology can help solving the problem of secure data storing and ensuring data availability at the same time. We use the basic principles of the American HIPAA regulation, which defines the public availability criteria of health data, however the different local regulations may differ significantly. Blockchain's decentralized, intermediary-free, cryptographically secured attributes offer a new way of storing patient data securely and at the same time publicly available in a regulated way, where a well-designed distributed peer-to-peer network incentivize the smooth operation of a full-featured EHR system.

2018-01-23
Di Crescenzo, Giovanni, Rajendran, Jeyavijayan, Karri, Ramesh, Memon, Nasir.  2017.  Boolean Circuit Camouflage: Cryptographic Models, Limitations, Provable Results and a Random Oracle Realization. Proceedings of the 2017 Workshop on Attacks and Solutions in Hardware Security. :7–16.

Recent hardware advances, called gate camouflaging, have opened the possibility of protecting integrated circuits against reverse-engineering attacks. In this paper, we investigate the possibility of provably boosting the capability of physical camouflaging of a single Boolean gate into physical camouflaging of a larger Boolean circuit. We first propose rigorous definitions, borrowing approaches from modern cryptography and program obfuscation areas, for circuit camouflage. Informally speaking, gate camouflaging is defined as a transformation of a physical gate that appears to mask the gate to an attacker evaluating the circuit containing this gate. Under this assumption, we formally prove two results: a limitation and a construction. Our limitation result says that there are circuits for which, no matter how many gates we camouflaged, an adversary capable of evaluating the circuit will correctly guess all the camouflaged gates. Our construction result says that if pseudo-random functions exist (a common assumptions in cryptography), a small number of camouflaged gates suffices to: (a) leak no additional information about the camouflaged gates to an adversary evaluating the pseudo-random function circuit; and (b) turn these functions into random oracles. These latter results are the first results on circuit camouflaging provable in a cryptographic model (previously, construction were given under no formal model, and were eventually reverse-engineered, or were argued secure under specific classes of attacks). Our results imply a concrete and provable realization of random oracles, which, even if under a hardware-based assumption, is applicable in many scenarios, including public-key infrastructures. Finding special conditions under which provable realizations of random oracles has been an open problem for many years, since a software only provable implementation of random oracles was proved to be (almost certainly) impossible.