Biblio
The use of biometrics in security applications may be vulnerable to several challenges of hacking. Thus, the emergence of cancellable biometrics becomes a suitable solution to this problem. This paper presents a one-way cancellable biometric transform that depends on 3D chaotic maps for face and fingerprint encryption. It aims to avoid cloning of original biometrics and allow the templates used by each user in different applications to be variable. The permutations achieved with the chaotic maps guarantee high security of the biometric templates, especially with the 3D implementation of the encryption algorithm. In addition, the paper presents a hardware implementation for this framework. The proposed algorithm also achieves good performance in the presence of low and moderate levels of noise. An experimental version of the proposed cancellable biometric system has been applied on FPGA model. The obtained results achieve a powerful performance of the proposed cancellable biometric system.
In the paper, an intrusion detection system to safeguard computer software is proposed. The detection is based on negative selection algorithm, inspired by the human immunity mechanism. It is composed of two stages, generation of receptors and anomaly detection. Experimental results of the proposed system are presented, analyzed, and concluded.
Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.
To protect against misuse of passwords compromised in a breach, consumers should promptly change affected passwords and any similar passwords on other accounts. Ideally, affected companies should strongly encourage this behavior and have mechanisms in place to mitigate harm. In order to make recommendations to companies about how to help their users perform these and other security-enhancing actions after breaches, we must first have some understanding of the current effectiveness of companies’ post-breach practices. To study the effectiveness of password-related breach notifications and practices enforced after a breach, we examine—based on real-world password data from 249 participants—whether and how constructively participants changed their passwords after a breach announcement. Of the 249 participants, 63 had accounts on breached domains; only 33% of the 63 changed their passwords and only 13% (of 63) did so within three months of the announcement. New passwords were on average 1.3× stronger than old passwords (when comparing log10-transformed strength), though most were weaker or of equal strength. Concerningly, new passwords were overall more similar to participants’ other passwords, and participants rarely changed passwords on other sites even when these were the same or similar to their password on the breached domain. Our results highlight the need for more rigorous passwordchanging requirements following a breach and more effective breach notifications that deliver comprehensive advice.
Human action recognition in video is one of the most widely applied topics in the field of image and video processing, with many applications in surveillance (security, sports, etc.), activity detection, video-content-based monitoring, man-machine interaction, and health/disability care. Action recognition is a complex process that faces several challenges such as occlusion, camera movement, viewpoint move, background clutter, and brightness variation. In this study, we propose a novel human action recognition method using convolutional neural networks (CNN) and deep bidirectional LSTM (DB-LSTM) networks, using only raw video frames. First, deep features are extracted from video frames using a pre-trained CNN architecture called ResNet152. The sequential information of the frames is then learned using the DB-LSTM network, where multiple layers are stacked together in both forward and backward passes of DB-LSTM, to increase depth. The evaluation results of the proposed method using PyTorch, compared to the state-of-the-art methods, show a considerable increase in the efficiency of action recognition on the UCF 101 dataset, reaching 95% recognition accuracy. The choice of the CNN architecture, proper tuning of input parameters, and techniques such as data augmentation contribute to the accuracy boost in this study.
A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.
Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.
As we expect that the presence of autonomous robots in our everyday life will increase, we must consider that people will have not only to accept robots to be a fundamental part of their lives, but they will also have to trust them to reliably and securely engage them in collaborative tasks. Several studies showed that robots are more comfortable interacting with robots that respect social conventions. However, it is still not clear if a robot that expresses social conventions will gain more favourably people's trust. In this study, we aimed to assess whether the use of social behaviours and natural communications can affect humans' sense of trust and companionship towards the robots. We conducted a between-subjects study where participants' trust was tested in three scenarios with increasing trust criticality (low, medium, high) in which they interacted either with a social or a non-social robot. Our findings showed that participants trusted equally a social and non-social robot in the low and medium consequences scenario. On the contrary, we observed that participants' choices of trusting the robot in a higher sensitive task was affected more by a robot that expressed social cues with a consequent decrease of their trust in the robot.