Visible to the public A Framework for Dynamic Network Architecture and Topology Optimization

TitleA Framework for Dynamic Network Architecture and Topology Optimization
Publication TypeJournal Article
Year of Publication2016
AuthorsShafigh, Alireza Shams, Lorenzo, Beatriz, Glisic, Savo, Pérez-Romero, Jordi, DaSilva, Luiz A., MacKenzie, Allen B., Röning, Juha
JournalIEEE/ACM Trans. Netw.
Volume24
Pagination717–730
ISSN1063-6692
Keywordsaccess point selection, composability, dna security, economic model, Metrics, network optimization, pubcrawl, quality of service (QoS), Resiliency, security investment, topology reconfiguration, traffic dynamics
Abstract

A new paradigm in wireless network access is presented and analyzed. In this concept, certain classes of wireless terminals can be turned temporarily into an access point (AP) anytime while connected to the Internet. This creates a dynamic network architecture (DNA) since the number and location of these APs vary in time. In this paper, we present a framework to optimize different aspects of this architecture. First, the dynamic AP association problem is addressed with the aim to optimize the network by choosing the most convenient APs to provide the quality-of-service (QoS) levels demanded by the users with the minimum cost. Then, an economic model is developed to compensate the users for serving as APs and, thus, augmenting the network resources. The users' security investment is also taken into account in the AP selection. A preclustering process of the DNA is proposed to keep the optimization process feasible in a high dense network. To dynamically reconfigure the optimum topology and adjust it to the traffic variations, a new specific encoding of genetic algorithm (GA) is presented. Numerical results show that GA can provide the optimum topology up to two orders of magnitude faster than exhaustive search for network clusters, and the improvement significantly increases with the cluster size.

URLhttp://dl.acm.org/citation.cfm?id=3001647.3001653
Citation Keyshafigh_framework_2016