Title | Evading Classifiers by Morphing in the Dark |
Publication Type | Conference Paper |
Year of Publication | 2017 |
Authors | Dang, Hung, Huang, Yue, Chang, Ee-Chien |
Conference Name | Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security |
Publisher | ACM |
Conference Location | New York, NY, USA |
ISBN Number | 978-1-4503-4946-8 |
Keywords | composability, evasion attacks, machine learning, Metrics, pubcrawl, Resiliency, sybil attacks |
Abstract | Learning-based systems have been shown to be vulnerable to evasion through adversarial data manipulation. These attacks have been studied under assumptions that the adversary has certain knowledge of either the target model internals, its training dataset or at least classification scores it assigns to input samples. In this paper, we investigate a much more constrained and realistic attack scenario wherein the target classifier is minimally exposed to the adversary, revealing only its final classification decision (e.g., reject or accept an input sample). Moreover, the adversary can only manipulate malicious samples using a blackbox morpher. That is, the adversary has to evade the targeted classifier by morphing malicious samples "in the dark". We present a scoring mechanism that can assign a real-value score which reflects evasion progress to each sample based on the limited information available. Leveraging on such scoring mechanism, we propose an evasion method - EvadeHC? and evaluate it against two PDF malware detectors, namely PDFRate and Hidost. The experimental evaluation demonstrates that the proposed evasion attacks are effective, attaining 100% evasion rate on the evaluation dataset. Interestingly, EvadeHC outperforms the known classifier evasion techniques that operate based on classification scores output by the classifiers. Although our evaluations are conducted on PDF malware classifiers, the proposed approaches are domain agnostic and are of wider application to other learning-based systems. |
URL | http://doi.acm.org/10.1145/3133956.3133978 |
DOI | 10.1145/3133956.3133978 |
Citation Key | dang_evading_2017 |