Visible to the public Biblio

Filters: Keyword is evasion attacks  [Clear All Filters]
2020-11-04
Apruzzese, G., Colajanni, M., Ferretti, L., Marchetti, M..  2019.  Addressing Adversarial Attacks Against Security Systems Based on Machine Learning. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1—18.

Machine-learning solutions are successfully adopted in multiple contexts but the application of these techniques to the cyber security domain is complex and still immature. Among the many open issues that affect security systems based on machine learning, we concentrate on adversarial attacks that aim to affect the detection and prediction capabilities of machine-learning models. We consider realistic types of poisoning and evasion attacks targeting security solutions devoted to malware, spam and network intrusion detection. We explore the possible damages that an attacker can cause to a cyber detector and present some existing and original defensive techniques in the context of intrusion detection systems. This paper contains several performance evaluations that are based on extensive experiments using large traffic datasets. The results highlight that modern adversarial attacks are highly effective against machine-learning classifiers for cyber detection, and that existing solutions require improvements in several directions. The paper paves the way for more robust machine-learning-based techniques that can be integrated into cyber security platforms.

2020-04-03
Song, Liwei, Shokri, Reza, Mittal, Prateek.  2019.  Membership Inference Attacks Against Adversarially Robust Deep Learning Models. 2019 IEEE Security and Privacy Workshops (SPW). :50—56.
In recent years, the research community has increasingly focused on understanding the security and privacy challenges posed by deep learning models. However, the security domain and the privacy domain have typically been considered separately. It is thus unclear whether the defense methods in one domain will have any unexpected impact on the other domain. In this paper, we take a step towards enhancing our understanding of deep learning models when the two domains are combined together. We do this by measuring the success of membership inference attacks against two state-of-the-art adversarial defense methods that mitigate evasion attacks: adversarial training and provable defense. On the one hand, membership inference attacks aim to infer an individual's participation in the target model's training dataset and are known to be correlated with target model's overfitting. On the other hand, adversarial defense methods aim to enhance the robustness of target models by ensuring that model predictions are unchanged for a small area around each sample in the training dataset. Intuitively, adversarial defenses may rely more on the training dataset and be more vulnerable to membership inference attacks. By performing empirical membership inference attacks on both adversarially robust models and corresponding undefended models, we find that the adversarial training method is indeed more susceptible to membership inference attacks, and the privacy leakage is directly correlated with model robustness. We also find that the provable defense approach does not lead to enhanced success of membership inference attacks. However, this is achieved by significantly sacrificing the accuracy of the model on benign data points, indicating that privacy, security, and prediction accuracy are not jointly achieved in these two approaches.
2019-02-13
Liu, Shigang, Zhang, Jun, Wang, Yu, Zhou, Wanlei, Xiang, Yang, Vel., Olivier De.  2018.  A Data-driven Attack Against Support Vectors of SVM. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :723–734.
Machine learning (ML) is commonly used in multiple disciplines and real-world applications, such as information retrieval, financial systems, health, biometrics and online social networks. However, their security profiles against deliberate attacks have not often been considered. Sophisticated adversaries can exploit specific vulnerabilities exposed by classical ML algorithms to deceive intelligent systems. It is emerging to perform a thorough security evaluation as well as potential attacks against the machine learning techniques before developing novel methods to guarantee that machine learning can be securely applied in adversarial setting. In this paper, an effective attack strategy for crafting foreign support vectors in order to attack a classic ML algorithm, the Support Vector Machine (SVM) has been proposed with mathematical proof. The new attack can minimize the margin around the decision boundary and maximize the hinge loss simultaneously. We evaluate the new attack in different real-world applications including social spam detection, Internet traffic classification and image recognition. Experimental results highlight that the security of classifiers can be worsened by poisoning a small group of support vectors.
2019-01-21
Wu, M., Li, Y..  2018.  Adversarial mRMR against Evasion Attacks. 2018 International Joint Conference on Neural Networks (IJCNN). :1–6.

Machine learning (ML) algorithms provide a good solution for many security sensitive applications, they themselves, however, face the threats of adversary attacks. As a key problem in machine learning, how to design robust feature selection algorithms against these attacks becomes a hot issue. The current researches on defending evasion attacks mainly focus on wrapped adversarial feature selection algorithm, i.e., WAFS, which is dependent on the classification algorithms, and time cost is very high for large-scale data. Since mRMR (minimum Redundancy and Maximum Relevance) algorithm is one of the most popular filter algorithms for feature selection without considering any classifier during feature selection process. In this paper, we propose a novel adversary-aware feature selection algorithm under filter model based on mRMR, named FAFS. The algorithm, on the one hand, takes the correlation between a single feature and a label, and the redundancy between features into account; on the other hand, when selecting features, it not only considers the generalization ability in the absence of attack, but also the robustness under attack. The performance of four algorithms, i.e., mRMR, TWFS (Traditional Wrapped Feature Selection algorithm), WAFS, and FAFS is evaluated on spam filtering and PDF malicious detection in the Perfect Knowledge attack scenarios. The experiment results show that FAFS has a better performance under evasion attacks with less time complexity, and comparable classification accuracy.

2018-05-02
Dang, Hung, Huang, Yue, Chang, Ee-Chien.  2017.  Evading Classifiers by Morphing in the Dark. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :119–133.
Learning-based systems have been shown to be vulnerable to evasion through adversarial data manipulation. These attacks have been studied under assumptions that the adversary has certain knowledge of either the target model internals, its training dataset or at least classification scores it assigns to input samples. In this paper, we investigate a much more constrained and realistic attack scenario wherein the target classifier is minimally exposed to the adversary, revealing only its final classification decision (e.g., reject or accept an input sample). Moreover, the adversary can only manipulate malicious samples using a blackbox morpher. That is, the adversary has to evade the targeted classifier by morphing malicious samples "in the dark". We present a scoring mechanism that can assign a real-value score which reflects evasion progress to each sample based on the limited information available. Leveraging on such scoring mechanism, we propose an evasion method – EvadeHC? and evaluate it against two PDF malware detectors, namely PDFRate and Hidost. The experimental evaluation demonstrates that the proposed evasion attacks are effective, attaining 100% evasion rate on the evaluation dataset. Interestingly, EvadeHC outperforms the known classifier evasion techniques that operate based on classification scores output by the classifiers. Although our evaluations are conducted on PDF malware classifiers, the proposed approaches are domain agnostic and are of wider application to other learning-based systems.
2017-05-22
Russu, Paolo, Demontis, Ambra, Biggio, Battista, Fumera, Giorgio, Roli, Fabio.  2016.  Secure Kernel Machines Against Evasion Attacks. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :59–69.

Machine learning is widely used in security-sensitive settings like spam and malware detection, although it has been shown that malicious data can be carefully modified at test time to evade detection. To overcome this limitation, adversary-aware learning algorithms have been developed, exploiting robust optimization and game-theoretical models to incorporate knowledge of potential adversarial data manipulations into the learning algorithm. Despite these techniques have been shown to be effective in some adversarial learning tasks, their adoption in practice is hindered by different factors, including the difficulty of meeting specific theoretical requirements, the complexity of implementation, and scalability issues, in terms of computational time and space required during training. In this work, we aim to develop secure kernel machines against evasion attacks that are not computationally more demanding than their non-secure counterparts. In particular, leveraging recent work on robustness and regularization, we show that the security of a linear classifier can be drastically improved by selecting a proper regularizer, depending on the kind of evasion attack, as well as unbalancing the cost of classification errors. We then discuss the security of nonlinear kernel machines, and show that a proper choice of the kernel function is crucial. We also show that unbalancing the cost of classification errors and varying some kernel parameters can further improve classifier security, yielding decision functions that better enclose the legitimate data. Our results on spam and PDF malware detection corroborate our analysis.

2017-03-27
Argyros, George, Stais, Ioannis, Jana, Suman, Keromytis, Angelos D., Kiayias, Aggelos.  2016.  SFADiff: Automated Evasion Attacks and Fingerprinting Using Black-box Differential Automata Learning. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1690–1701.

Finding differences between programs with similar functionality is an important security problem as such differences can be used for fingerprinting or creating evasion attacks against security software like Web Application Firewalls (WAFs) which are designed to detect malicious inputs to web applications. In this paper, we present SFADIFF, a black-box differential testing framework based on Symbolic Finite Automata (SFA) learning. SFADIFF can automatically find differences between a set of programs with comparable functionality. Unlike existing differential testing techniques, instead of searching for each difference individually, SFADIFF infers SFA models of the target programs using black-box queries and systematically enumerates the differences between the inferred SFA models. All differences between the inferred models are checked against the corresponding programs. Any difference between the models, that does not result in a difference between the corresponding programs, is used as a counterexample for further refinement of the inferred models. SFADIFF's model-based approach, unlike existing differential testing tools, also support fully automated root cause analysis in a domain-independent manner. We evaluate SFADIFF in three different settings for finding discrepancies between: (i) three TCP implementations, (ii) four WAFs, and (iii) HTML/JavaScript parsing implementations in WAFs and web browsers. Our results demonstrate that SFADIFF is able to identify and enumerate the differences systematically and efficiently in all these settings. We show that SFADIFF is able to find differences not only between different WAFs but also between different versions of the same WAF. SFADIFF is also able to discover three previously-unknown differences between the HTML/JavaScript parsers of two popular WAFs (PHPIDS 0.7 and Expose 2.4.0) and the corresponding parsers of Google Chrome, Firefox, Safari, and Internet Explorer. We confirm that all these differences can be used to evade the WAFs and launch successful cross-site scripting attacks.