Biblio

Found 19604 results

2017-07-11
Morgan Evans, Jaspreet Bhatia, Sudarshan Wadkar, Travis Breaux.  2017.  An Evaluation of Constituency-based Hyponymy Extraction from Privacy Policies . 25th IEEE International Requirements Engineering Conference.

Requirements analysts can model regulated data practices to identify and reason about risks of noncompliance. If terminology is inconsistent or ambiguous, however, these models and their conclusions will be unreliable. To study this problem, we investigated an approach to automatically construct an information type ontology by identifying information type hyponymy in privacy policies using Tregex patterns. Tregex is a utility to match regular expressions against constituency parse trees, which are hierarchical expressions of natural language clauses, including noun and verb phrases. We discovered the Tregex patterns by applying content analysis to 30 privacy policies from six domains (shopping, telecommunication, social networks, employment, health, and news.) From this dataset, three semantic and four lexical categories of hyponymy emerged based on category completeness and wordorder. Among these, we identified and empirically evaluated 72 Tregex patterns to automate the extraction of hyponyms from privacy policies. The patterns match information type hyponyms with an average precision of 0.72 and recall of 0.74. 

2018-05-27
2018-02-27
Potluri, S., Henry, N. F., Diedrich, C..  2017.  Evaluation of Hybrid Deep Learning Techniques for Ensuring Security in Networked Control Systems. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

With the rapid application of the network based communication in industries, the security related problems appear to be inevitable for automation networks. The integration of internet into the automation plant benefited companies and engineers a lot and on the other side paved ways to number of threats. An attack on such control critical infrastructure may endangers people's health and safety, damage industrial facilities and produce financial loss. One of the approach to secure the network in automation is the development of an efficient Network based Intrusion Detection System (NIDS). Despite several techniques available for intrusion detection, they still lag in identifying the possible attacks or novel attacks on network efficiently. In this paper, we evaluate the performance of detection mechanism by combining the deep learning techniques with the machine learning techniques for the development of Intrusion Detection System (IDS). The performance metrics such as precession, recall and F-Measure were measured.

2018-06-07
Akcay, S., Breckon, T. P..  2017.  An evaluation of region based object detection strategies within X-ray baggage security imagery. 2017 IEEE International Conference on Image Processing (ICIP). :1337–1341.

Here we explore the applicability of traditional sliding window based convolutional neural network (CNN) detection pipeline and region based object detection techniques such as Faster Region-based CNN (R-CNN) and Region-based Fully Convolutional Networks (R-FCN) on the problem of object detection in X-ray security imagery. Within this context, with limited dataset availability, we employ a transfer learning paradigm for network training tackling both single and multiple object detection problems over a number of R-CNN/R-FCN variants. The use of first-stage region proposal within the Faster RCNN and R-FCN provide superior results than traditional sliding window driven CNN (SWCNN) approach. With the use of Faster RCNN with VGG16, pretrained on the ImageNet dataset, we achieve 88.3 mAP for a six object class X-ray detection problem. The use of R-FCN with ResNet-101, yields 96.3 mAP for the two class firearm detection problem requiring 0.1 second computation per image. Overall we illustrate the comparative performance of these techniques as object localization strategies within cluttered X-ray security imagery.

2018-05-14
2018-04-02
Innokentievich, T. P., Vasilevich, M. V..  2017.  The Evaluation of the Cryptographic Strength of Asymmetric Encryption Algorithms. 2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC). :180–183.

We propose a method for comparative analysis of evaluation of the cryptographic strength of the asymmetric encryption algorithms RSA and the existing GOST R 34.10-2001. Describes the fundamental design ratios, this method is based on computing capacity used for decoding and the forecast for the development of computer technology.

2018-06-04
2018-11-28
Ghelani, Nimesh, Mohammed, Salman, Wang, Shine, Lin, Jimmy.  2017.  Event Detection on Curated Tweet Streams. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. :1325–1328.

We present a system for identifying interesting social media posts on Twitter and delivering them to users' mobile devices in real time as push notifications. In our problem formulation, users are interested in broad topics such as politics, sports, and entertainment: our system processes tweets in real time to identify relevant, novel, and salient content. There are three interesting aspects to our work: First, instead of attempting to tame the cacophony of unfiltered tweets, we exploit a smaller, but still sizeable, collection of curated tweet streams corresponding to the Twitter accounts of different media outlets. Second, we apply distant supervision to extract topic labels from curated streams that have a specific focus, which can then be leveraged to build high-quality topic classifiers essentially "for free". Finally, our system delivers content via Twitter direct messages, supporting in situ interactions modeled after conversations with intelligent agents. These ideas are demonstrated in an end-to-end working prototype.

2018-12-03
Zulkipli, Nurul Huda Nik, Wills, Gary B..  2017.  An Event-based Access Control for IoT. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :121:1–121:4.

The Internet of Things (IoT) comes together with the connection between sensors and devices. These smart devices have been upgraded from a standalone device which can only handle a specific task at one time to an interactive device that can handle multiple tasks in time. However, this technology has been exposed to many vulnerabilities especially on the malicious attacks of the devices. With the IoT constraints and low-security mechanisms applied, the malicious attacks could exploit the sensor vulnerability to provide wrong data where it can lead to wrong interpretation and actuation to the users. Due to this problems, this short paper presents an event-based access control framework that considers integrity, privacy and the authenticity in the IoT devices.

2018-02-15
Kaushal, P. K., Bagga, A., Sobti, R..  2017.  Evolution of bitcoin and security risk in bitcoin wallets. 2017 International Conference on Computer, Communications and Electronics (Comptelix). :172–177.

This paper identifies trust factor and rewarding nature of bitcoin system, and analyzes bitcoin features which may facilitate bitcoin to emerge as a universal currency. Paper presents the gap between proposed theoretical-architecture and current practical-implementation of bitcoin system in terms of achieving decentralization, anonymity of users, and consensus. Paper presents three different ways in which a user can manage bitcoins. We attempt to identify the security risk and feasible attacks on these configurations of bitcoin management. We have shown that not all bitcoin wallets are safe against all possible types of attacks. Bitcoin core is only safest mode of operating bitcoin till date as it is secure against all feasible attacks, and is vulnerable only against block-chain rewriting.

2018-03-05
Mahfood Haddad, Yara, Ali, Hesham H..  2017.  An Evolutionary Graph-Based Approach for Managing Self-Organized IoT Networks. Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access. :113–119.

Wireless sensor networks (WSNs) are one of the most rapidly developing information technologies and promise to have a variety of applications in Next Generation Networks (NGNs) including the IoT. In this paper, the focus will be on developing new methods for efficiently managing such large-scale networks composed of homogeneous wireless sensors/devices in urban environments such as homes, hospitals, stores and industrial compounds. Heterogeneous networks were proposed in a comparison with the homogeneous ones. The efficiency of these networks will depend on several optimization parameters such as the redundancy, as well as the percentages of coverage and energy saved. We tested the algorithm using different densities of sensors in the network and different values of tuning parameters for the optimization parameters. Obtained results show that our proposed algorithm performs better than the other greedy algorithm. Moreover, networks with more sensors maintain more redundancy and better percentage of coverage. However, it wastes more energy. The same method will be used for heterogeneous wireless sensors networks where devices have different characteristics and the network acts more efficient.

2017-12-12
Poudel, B., Louis, S. J., Munir, A..  2017.  Evolving side-channel resistant reconfigurable hardware for elliptic curve cryptography. 2017 IEEE Congress on Evolutionary Computation (CEC). :2428–2436.

We propose to use a genetic algorithm to evolve novel reconfigurable hardware to implement elliptic curve cryptographic combinational logic circuits. Elliptic curve cryptography offers high security-level with a short key length making it one of the most popular public-key cryptosystems. Furthermore, there are no known sub-exponential algorithms for solving the elliptic curve discrete logarithm problem. These advantages render elliptic curve cryptography attractive for incorporating in many future cryptographic applications and protocols. However, elliptic curve cryptography has proven to be vulnerable to non-invasive side-channel analysis attacks such as timing, power, visible light, electromagnetic, and acoustic analysis attacks. In this paper, we use a genetic algorithm to address this vulnerability by evolving combinational logic circuits that correctly implement elliptic curve cryptographic hardware that is also resistant to simple timing and power analysis attacks. Using a fitness function composed of multiple objectives - maximizing correctness, minimizing propagation delays and minimizing circuit size, we can generate correct combinational logic circuits resistant to non-invasive, side channel attacks. To the best of our knowledge, this is the first work to evolve a cryptography circuit using a genetic algorithm. We implement evolved circuits in hardware on a Xilinx Kintex-7 FPGA. Results reveal that the evolutionary algorithm can successfully generate correct, and side-channel resistant combinational circuits with negligible propagation delay.

2018-05-16
Codescu, M. M., Kappel, W., Chitanu, E., Manta, E..  2017.  Exchange hardened ferrimagnetic nanocomposites. 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE). :444–447.

Having significant role in the storing, delivering and conversion of the energy, the permanent magnets are key elements in the actual technology. In many applications, the gap between ferrites and rare earths (RE) based sintered permanent magnets is nowadays filled by RE bonded magnets, used in more applications, below their magnetic performances. Therewith, the recent trends in the RE market concerning their scarcity, impose EU to consider alternative magnets (without RE) to fill such gap. The paper presents the chemical synthesis of the exchange coupled SrFe12O19/CoFe2O4 nanocomposites, based on nanoferrites. The appropriate annealing leads to the increasing of the main magnetic characteristics, saturation magnetization MS and intrinsic coercivity Hc, in the range of 49 - 53 emu/g, respectively 126.5 - 306 kA/m. The value reached for the ratio between remanent magnetization and saturation magnetization is higher than 0.5, fact that proved that between the two magnetic phases occurred exchange interaction.

2021-10-22
[Anonymous].  2017.  Executive Order 13800: Growing and Sustaining the Cybersecurity Workforce.

On May 11, 2017, the President of the United States issued the Executive Order on Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure. In part, the order states that it is the policy of the United States “to support the growth and sustainment of a workforce that is skilled in cybersecurity and related fields as the foundation for achieving our objectives in cyberspace.”  Consequently, the Secretary of Commerce and Secretary of Homeland Security are directed to:

1) “assess the scope and sufficiency of efforts to educate and train the American cybersecurity workforce of the future, including cybersecurity-related education curricula, training, and apprenticeship programs, from primary through higher education”; and,

2) “provide a report to the President with findings and recommendations regarding how to support the growth and sustainment of the Nation's cybersecurity workforce in both the public and private sectors.”  

With the active involvement of more than a dozen federal departments agencies, and with public input, the Commerce and Homeland Security Secretaries submitted a report to the President, Supporting the Growth and Sustainment of the Nation's Cybersecurity Workforce. A full list of federal contributors and details about private sector input is included in the report.

Key findings and recommendations from that report are available here.

2018-02-28
Arellanes, D., Lau, K. K..  2017.  Exogenous Connectors for Hierarchical Service Composition. 2017 IEEE 10th Conference on Service-Oriented Computing and Applications (SOCA). :125–132.

Service composition is currently done by (hierarchical) orchestration and choreography. However, these approaches do not support explicit control flow and total compositionality, which are crucial for the scalability of service-oriented systems. In this paper, we propose exogenous connectors for service composition. These connectors support both explicit control flow and total compositionality in hierarchical service composition. To validate and evaluate our proposal, we present a case study based on the popular MusicCorp.

2017-05-30
Sainju, Arpan Man, Atkison, Travis.  2017.  An Experimental Analysis of Windows Log Events Triggered by Malware. Proceedings of the SouthEast Conference. :195–198.

According to the 2016 Internet Security Threat Report by Symantec, there are around 431 million variants of malware known. This effort focuses on malware used for spying on user's activities, remotely controlling devices, and identity and credential theft within a Windows based operating system. As Windows operating systems create and maintain a log of all events that are encountered, various malware are tested on virtual machines to determine what events they trigger in the Windows logs. The observations are compiled into Operating System specific lookup tables that can then be used to find the tested malware on other computers with the same Operating System.

2018-03-19
Mavani, M., Asawa, K..  2017.  Experimental Study of IP Spoofing Attack in 6LoWPAN Network. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :445–449.

6L0WPAN is a communication protocol for Internet of Things. 6LoWPAN is IPv6 protocol modified for low power and lossy personal area networks. 6LoWPAN inherits threats from its predecessors IPv4 and IPv6. IP spoofing is a known attack prevalent in IPv4 and IPv6 networks but there are new vulnerabilities which creates new paths, leading to the attack. This study performs the experimental study to check the feasibility of performing IP spoofing attack on 6LoWPAN Network. Intruder misuses 6LoWPAN control messages which results into wrong IPv6-MAC binding in router. Attack is also simulated in cooja simulator. Simulated results are analyzed for finding cost to the attacker in terms of energy and memory consumption.

2018-05-17
Li, Nan, Chen, Hao, Kolmanovsky, Ilya, Girard, Anouck.  2017.  An explicit decision tree approach for automated driving. Proceedings of ASME Dynamic Systems and Control Conference.
2018-01-23
Bianchi, Antonio, Gustafson, Eric, Fratantonio, Yanick, Kruegel, Christopher, Vigna, Giovanni.  2017.  Exploitation and Mitigation of Authentication Schemes Based on Device-Public Information. Proceedings of the 33rd Annual Computer Security Applications Conference. :16–27.

Today's mobile applications increasingly rely on communication with a remote backend service to perform many critical functions, including handling user-specific information. This implies that some form of authentication should be used to associate a user with their actions and data. Since schemes involving tedious account creation procedures can represent "friction" for users, many applications are moving toward alternative solutions, some of which, while increasing usability, sacrifice security. This paper focuses on a new trend of authentication schemes based on what we call "device-public" information, which consists of properties and data that any application running on a device can obtain. While these schemes are convenient to users, since they require little to no interaction, they are vulnerable by design, since all the needed information to authenticate a user is available to any app installed on the device. An attacker with a malicious app on a user's device could easily hijack the user's account, steal private information, send (and receive) messages on behalf of the user, or steal valuable virtual goods. To demonstrate how easily these vulnerabilities can be weaponized, we developed a generic exploitation technique that first mines all relevant data from a victim's phone, and then transfers and injects them into an attacker's phone to fool apps into granting access to the victim's account. Moreover, we developed a dynamic analysis detection system to automatically highlight problematic apps. Using our tool, we analyzed 1,000 popular applications and found that 41 of them, including the popular messaging apps WhatsApp and Viber, were vulnerable. Finally, our work proposes solutions to this issue, based on modifications to the Android API.

2018-03-26
Ali, Irfan, Hong, Jiwon, Kim, Sang-Wook.  2017.  Exploiting Implicit and Explicit Signed Trust Relationships for Effective Recommendations. Proceedings of the Symposium on Applied Computing. :804–810.

Trust networks have been widely used to mitigate the data sparsity and cold-start problems of collaborative filtering. Recently, some approaches have been proposed which exploit explicit signed trust relationships, i.e., trust and distrust relationships. These approaches ignore the fact that users despite trusting/distrusting each other in a trust network may have different preferences in real-life. Most of these approaches also handle the notion of the transitivity of distrust as well as trust. However, other existing work observed that trust is transitive while distrust is intransitive. Moreover, explicit signed trust relationships are fairly sparse and may not contribute to infer true preferences of users. In this paper, we propose to create implicit signed trust relationships and exploit them along with explicit signed trust relationship to solve sparsity problem of trust relationships. We also confirm the similarity (resp. dissimilarity) of implicit and explicit trust (resp. distrust) relationships by using the similarity score between users so that users' true preferences can be inferred. In addition to these strategies, we also propose a matrix factorization model that simultaneously exploits implicit and explicit signed trust relationships along with rating information and also handles transitivity of trust and intransitivity of distrust. Extensive experiments on Epinions dataset show that the proposed approach outperforms existing approaches in terms of accuracy.

2018-02-06
Milo\v sević, Jezdimir, Tanaka, Takashi, Sandberg, Henrik, Johansson, Karl Henrik.  2017.  Exploiting Submodularity in Security Measure Allocation for Industrial Control Systems. Proceedings of the 1st ACM Workshop on the Internet of Safe Things. :64–69.

Industrial control systems are cyber-physical systems that are used to operate critical infrastructures such as smart grids, traffic systems, industrial facilities, and water distribution networks. The digitalization of these systems increases their efficiency and decreases their cost of operation, but also makes them more vulnerable to cyber-attacks. In order to protect industrial control systems from cyber-attacks, the installation of multiple layers of security measures is necessary. In this paper, we study how to allocate a large number of security measures under a limited budget, such as to minimize the total risk of cyber-attacks. The security measure allocation problem formulated in this way is a combinatorial optimization problem subject to a knapsack (budget) constraint. The formulated problem is NP-hard, therefore we propose a method to exploit submodularity of the objective function so that polynomial time algorithms can be applied to obtain solutions with guaranteed approximation bounds. The problem formulation requires a preprocessing step in which attack scenarios are selected, and impacts and likelihoods of these scenarios are estimated. We discuss how the proposed method can be applied in practice.

 

2018-05-25
Fang, Zhou, Luo, Mulong, Srivastava, Mani B, Gupta, Rajesh K.  2017.  Exploiting Synchrony in Replicated State Machines. Cloud Computing (CLOUD), 2017 IEEE 10th International Conference on. :155–162.
2018-02-06
Jujare, Madhuri, Baynes, Anna.  2017.  Exploration of Text Analytic Tooling on Classwork to Support Students' Learning in Information Technology. Proceedings of the 18th Annual Conference on Information Technology Education. :141–146.

Information technology graduates reach industry and innovate for the future after completing demanding degrees. Upper division college courses require long hours of work on class projects and exams. Some students have hopes of completing their degrees, but are deterred due to many different issues. Instructors can monitor students' progress based on their assignments, projects, and exams. Judging students' understanding and potential for success becomes more difficult when handling large classes. In this paper we utilize IBM Text Analytics Web Tooling on large amounts of unstructured text data collected from past assignments, exams, and discussions to help professors make assessments faster for large classes. In particular, we focus on an Information Security course offered at San Jose State University and use its classroom-generated data to determine if the extracted information provides strong insights for professors to help struggling students. We examine these issues through exploratory analysis.

di Sciascio, Cecilia, Mayr, Lukas, Veas, Eduardo.  2017.  Exploring and Summarizing Document Colletions with Multiple Coordinated Views. Proceedings of the 2017 ACM Workshop on Exploratory Search and Interactive Data Analytics. :41–48.

Knowledge work such as summarizing related research in preparation for writing, typically requires the extraction of useful information from scientific literature. Nowadays the primary source of information for researchers comes from electronic documents available on the Web, accessible through general and academic search engines such as Google Scholar or IEEE Xplore. Yet, the vast amount of resources makes retrieving only the most relevant results a difficult task. As a consequence, researchers are often confronted with loads of low-quality or irrelevant content. To address this issue we introduce a novel system, which combines a rich, interactive Web-based user interface and different visualization approaches. This system enables researchers to identify key phrases matching current information needs and spot potentially relevant literature within hierarchical document collections. The chosen context was the collection and summarization of related work in preparation for scientific writing, thus the system supports features such as bibliography and citation management, document metadata extraction and a text editor. This paper introduces the design rationale and components of the PaperViz. Moreover, we report the insights gathered in a formative design study addressing usability.

2018-09-12
Cherniak, Ramblin, Zhu, Qiang, Gu, Yarong, Pramanik, Sakti.  2017.  Exploring Deletion Strategies for the BoND-Tree in Multidimensional Non-ordered Discrete Data Spaces. Proceedings of the 21st International Database Engineering & Applications Symposium. :153–160.

Box queries on a dataset in a multidimensional data space are a type of query which specifies a set of allowed values for each dimension. Indexing a dataset in a multidimensional Non-ordered Discrete Data Space (NDDS) for supporting efficient box queries is becoming increasingly important in many application domains such as genome sequence analysis. The BoND-tree was recently introduced as an index structure specifically designed for box queries in an NDDS. Earlier work focused on developing strategies for building an effective BoND-tree to achieve high query performance. Developing efficient and effective techniques for deleting indexed vectors from the BoND-tree remains an open issue. In this paper, we present three deletion algorithms based on different underflow handling strategies in an NDDS. Our study shows that incorporating a new BoND-tree inspired heuristic can provide improved performance compared to the traditional underflow handling heuristics in NDDSs.