Biblio

Filters: Author is Johansson, Karl Henrik  [Clear All Filters]
2020-06-08
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
2018-02-06
Milo\v sević, Jezdimir, Tanaka, Takashi, Sandberg, Henrik, Johansson, Karl Henrik.  2017.  Exploiting Submodularity in Security Measure Allocation for Industrial Control Systems. Proceedings of the 1st ACM Workshop on the Internet of Safe Things. :64–69.

Industrial control systems are cyber-physical systems that are used to operate critical infrastructures such as smart grids, traffic systems, industrial facilities, and water distribution networks. The digitalization of these systems increases their efficiency and decreases their cost of operation, but also makes them more vulnerable to cyber-attacks. In order to protect industrial control systems from cyber-attacks, the installation of multiple layers of security measures is necessary. In this paper, we study how to allocate a large number of security measures under a limited budget, such as to minimize the total risk of cyber-attacks. The security measure allocation problem formulated in this way is a combinatorial optimization problem subject to a knapsack (budget) constraint. The formulated problem is NP-hard, therefore we propose a method to exploit submodularity of the objective function so that polynomial time algorithms can be applied to obtain solutions with guaranteed approximation bounds. The problem formulation requires a preprocessing step in which attack scenarios are selected, and impacts and likelihoods of these scenarios are estimated. We discuss how the proposed method can be applied in practice.