Biblio

Found 19604 results

2023-02-03
Liang, Xiubo, Guo, Ningxiang, Hong, Chaoqun.  2022.  A Certificate Authority Scheme Based on Trust Ring for Consortium Nodes. 2022 International Conference on High Performance Big Data and Intelligent Systems (HDIS). :90–94.
The access control mechanism of most consortium blockchain is implemented through traditional Certificate Authority scheme based on trust chain and centralized key management such as PKI/CA at present. However, the uneven power distribution of CA nodes may cause problems with leakage of certificate keys, illegal issuance of certificates, malicious rejection of certificates issuance, manipulation of issuance logs and metadata, it could compromise the security and dependability of consortium blockchain. Therefore, this paper design and implement a Certificate Authority scheme based on trust ring model that can not only enhance the reliability of consortium blockchain, but also ensure high performance. Combined public key, transformation matrix and elliptic curve cryptography are applied to the scheme to generate and store keys in a cluster of CA nodes dispersedly and securely for consortium nodes. It greatly reduced the possibility of malicious behavior and key leakage. To achieve the immutability of logs and metadata, the scheme also utilized public blockchain and smart contract technology to organize the whole procedure of certificate issuance, the issuance logs and metadata for certificate validation are stored in public blockchain. Experimental results showed that the scheme can surmount the disadvantages of the traditional scheme while maintaining sufficiently good performance, including issuance speed and storage efficiency of certificates.
2023-04-14
Salman, Hanadi, Naderi, Sanaz, Arslan, Hüseyin.  2022.  Channel-Dependent Code Allocation for Downlink MC-CDMA System Aided Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Spreading codes are the core of the spread spectrum transmission. In this paper, a novel channel-dependent code allocation procedure for enhancing security in multi-carrier code division multiple access (MC-CDMA) system is proposed and investigated over frequency-selective fading. The objective of the proposed technique is to assign the codes to every subcarrier of active/legitimate receivers (Rxs) based on their channel frequency response (CFR). By that, we ensure security for legitimate Rxs against eavesdropping while preserving mutual confidentiality between the legitimate Rxs themselves. To do so, two assigning modes; fixed assigning mode (FAM) and adaptive assigning mode (AAM), are exploited. The effect of the channel estimation error and the number of legitimate Rxs on the bit error rate (BER) performance is studied. The presented simulations show that AAM provides better security with a complexity trade-off compared to FAM. While the latter is more robust against the imperfection of channel estimation.
ISSN: 2577-2465
2023-06-22
Tiwari, Anurag, Srivastava, Vinay Kumar.  2022.  A Chaotic Encrypted Reliable Image Watermarking Scheme based on Integer Wavelet Transform-Schur Transform and Singular Value Decomposition. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :581–586.
In the present era of the internet, image watermarking schemes are used to provide content authentication, security and reliability of various multimedia contents. In this paper image watermarking scheme which utilizes the properties of Integer Wavelet Transform (IWT), Schur decomposition and Singular value decomposition (SVD) based is proposed. In the suggested method, the cover image is subjected to a 3-level Integer wavelet transform (IWT), and the HH3 subband is subjected to Schur decomposition. In order to retrieve its singular values, the upper triangular matrix from the HH3 subband’s Schur decomposition is then subjected to SVD. The watermark image is first encrypted using a chaotic map, followed by the application of a 3-level IWT to the encrypted watermark and the usage of singular values of the LL-subband to embed by manipulating the singular values of the processed cover image. The proposed scheme is tested under various attacks like filtering (median, average, Gaussian) checkmark (histogram equalization, rotation, horizontal and vertical flipping) and noise (Gaussian, Salt & Pepper Noise). The suggested scheme provides strong robustness against numerous attacks and chaotic encryption provides security to watermark.
2023-03-17
Podeti, Raveendra, Sreeharirao, Patri, Pullakandam, Muralidhar.  2022.  The chaotic-based challenge feed mechanism for Arbiter Physical Unclonable Functions (APUFs) with enhanced reliability in IoT security. 2022 IEEE International Symposium on Smart Electronic Systems (iSES). :118–123.
Physical Unclonable Functions (PUFs) are the secured hardware primitives to authenticate Integrated Circuits (ICs) from various unauthorized attacks. The secured key generation mechanism through PUFs is based on random Process Variations (PVs) inherited by the CMOS transistors. In this paper, we proposed a chaotic-based challenge generation mechanism to feed the arbiter PUFs. The chaotic property is introduced to increase the non-linearity in the arbitration mechanism thereby the uncertainty of the keys is attained. The chaotic sequences are easy to generate, difficult to intercept, and have the additional advantage of being in a large number Challenge-Response Pair (CRP) generation. The proposed design has a significant advantage in key generation with improved uniqueness and diffuseness of 47.33%, and 50.02% respectively. Moreover, the enhancement in the reliability of 96.14% and 95.13% range from −40C to 125C with 10% fluctuations in supply voltage states that it has prominent security assistance to the Internet of Things (IoT) enabled devices against malicious attacks.
2023-07-20
Lourens, Melanie, Naureen, Ayesha, Guha, Shouvik Kumar, Ahamad, Shahanawaj, Dharamvir, Tripathi, Vikas.  2022.  Circumstantial Discussion on Security and Privacy Protection using Cloud Computing Technology. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1589—1593.
Cloud computing is becoming a demanding technology due to its flexibility, sensibility and remote accessibility. Apart from these applications of cloud computing, privacy and security are two terms that pose a circumstantial discussion. Various authors have argued on this topic that cloud computing is more secure than other data sharing and storing methods. The conventional data storing system is a computer system or smartphone storage. The argument debate also states that cloud computing is vulnerable to enormous types of attacks which make it a more concerning technology. This current study has also tried to draw the circumstantial and controversial debate on the security and privacy system of cloud computing. Primary research has been conducted with 65 cloud computing experts to understand whether a cloud computing security technique is highly secure or not. An online survey has been conducted with them where they provided their opinions based on the security and privacy system of cloud computing. Findings showed that no particular technology is available which can provide maximum security. Although the respondents agreed that blockchain is a more secure cloud computing technology; however, the blockchain also has certain threats which need to be addressed. The study has found essential encryption systems that can be integrated to strengthen security; however, continuous improvement is required.
2023-07-31
He, Yang, Gao, Xianzhou, Liang, Fei, Yang, Ruxia.  2022.  A Classification Method of Power Unstructured Encrypted Data Based on Fuzzy Data Matching. 2022 3rd International Conference on Intelligent Design (ICID). :294—298.
With the development of the digital development transformation of the power grid, the classification of power unstructured encrypted data is an important basis for data security protection. However, most studies focus on exact match classification or single-keyword fuzzy match classification. This paper proposes a fuzzy matching classification method for power unstructured encrypted data. The data owner generates an index vector based on the power unstructured file, and the data user generates a query vector by querying the file through the same process. The index and query vector are uploaded to the cloud server in encrypted form, and the cloud server calculates the relevance score and sorts it, and returns the classification result with the highest score to the user. This method realizes the multi-keyword fuzzy matching classification of unstructured encrypted data of electric power, and through the experimental simulation of a large number of data sets, the effect and feasibility of the method are proved.
2023-03-31
Zhang, Hui, Ding, Jianing, Tan, Jianlong, Gou, Gaopeng, Shi, Junzheng.  2022.  Classification of Mobile Encryption Services Based on Context Feature Enhancement. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :860–866.
Smart phones have become the preferred way for Chinese Internet users currently. The mobile phone traffic is large from the operating system. These traffic is mainly generated by the services. In the context of the universal encryption of the traffic, classification identification of mobile encryption services can effectively reduce the difficulty of analytical difficulty due to mobile terminals and operating system diversity, and can more accurately identify user access targets, and then enhance service quality and network security management. The existing mobile encryption service classification methods have two shortcomings in feature selection: First, the DL model is used as a black box, and the features of large dimensions are not distinguished as input of classification model, which resulting in sharp increase in calculation complexity, and the actual application is limited. Second, the existing feature selection method is insufficient to use the time and space associated information of traffic, resulting in less robustness and low accuracy of the classification. In this paper, we propose a feature enhancement method based on adjacent flow contextual features and evaluate the Apple encryption service traffic collected from the real world. Based on 5 DL classification models, the refined classification accuracy of Apple services is significantly improved. Our work can provide an effective solution for the fine management of mobile encryption services.
2023-09-20
Hu, Ningyuan.  2022.  Classification of Mobile Phone Price Dataset Using Machine Learning Algorithms. 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML). :438—443.
With the development of technology, mobile phones are an indispensable part of human life. Factors such as brand, internal memory, wifi, battery power, camera and availability of 4G are now modifying consumers' decisions on buying mobile phones. But people fail to link those factors with the price of mobile phones; in this case, this paper is aimed to figure out the problem by using machine learning algorithms like Support Vector Machine, Decision Tree, K Nearest Neighbors and Naive Bayes to train the mobile phone dataset before making predictions of the price level. We used appropriate algorithms to predict smartphone prices based on accuracy, precision, recall and F1 score. This not only helps customers have a better choice on the mobile phone but also gives advice to businesses selling mobile phones that the way to set reasonable prices with the different features they offer. This idea of predicting prices level will give support to customers to choose mobile phones wisely in the future. The result illustrates that among the 4 classifiers, SVM returns to the most desirable performance with 94.8% of accuracy, 97.3 of F1 score (without feature selection) and 95.5% of accuracy, 97.7% of F1 score (with feature selection).
2023-09-01
Zhang, Jiaxing.  2022.  Cloud Security Analysis Based on Virtualization Technology. 2022 International Conference on Big Data, Information and Computer Network (BDICN). :519—522.
The experimental results demonstrated that, With the development of cloud computing, more and more people use cloud computing to do all kinds of things. However, for cloud computing, the most important thing is to ensure the stability of user data and improve security at the same time. From an analysis of the experimental results, it can be found that Cloud computing makes extensive use of technical means such as computing virtualization, storage system virtualization and network system virtualization, abstracts the underlying physical facilities into external unified interfaces, maps several virtual networks with different topologies to the underlying infrastructure, and provides differentiated services for external users. By comparing and analyzing the experimental results, it is clear that virtualization technology will be the main way to solve cloud computing security. Virtualization technology introduces a virtual layer between software and hardware, provides an independent running environment for applications, shields the dynamics, distribution and differences of hardware platforms, supports the sharing and reuse of hardware resources, provides each user with an independent and isolated computer environment, and facilitates the efficient and dynamic management and maintenance of software and hardware resources of the whole system. Applying virtualization technology to cloud security reduces the hardware cost and management cost of "cloud security" enterprises to a certain extent, and improves the security of "cloud security" technology to a certain extent. This paper will outline the basic cloud computing security methods, and focus on the analysis of virtualization cloud security technology
2023-08-23
Liang, Chenjun, Deng, Li, Zhu, Jincan, Cao, Zhen, Li, Chao.  2022.  Cloud Storage I/O Load Prediction Based on XB-IOPS Feature Engineering. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :54—60.
With the popularization of cloud computing and the deepening of its application, more and more cloud block storage systems have been put into use. The performance optimization of cloud block storage systems has become an important challenge facing today, which is manifested in the reduction of system performance caused by the unbalanced resource load of cloud block storage systems. Accurately predicting the I/O load status of the cloud block storage system can effectively avoid the load imbalance problem. However, the cloud block storage system has the characteristics of frequent random reads and writes, and a large amount of I/O requests, which makes prediction difficult. Therefore, we propose a novel I/O load prediction method for XB-IOPS feature engineering. The feature engineering is designed according to the I/O request pattern, I/O size and I/O interference, and realizes the prediction of the actual load value at a certain moment in the future and the average load value in the continuous time interval in the future. Validated on a real dataset of Alibaba Cloud block storage system, the results show that the XB-IOPS feature engineering prediction model in this paper has better performance in Alibaba Cloud block storage devices where random I/O and small I/O dominate. The prediction performance is better, and the prediction time is shorter than other prediction models.
2023-01-20
Kumar, Santosh, Kumar, N M G, Geetha, B.T., Sangeetha, M., Chakravarthi, M. Kalyan, Tripathi, Vikas.  2022.  Cluster, Cloud, Grid Computing via Network Communication Using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1220—1224.
Traditional power consumption management systems are not showing enough reliability and thus, smart grid technology has been introduced to reduce the excess power wastages. In the context of smart grid systems, network communication is another term that is used for developing the network between the users and the load profiles. Cloud computing and clustering are also executed for efficient power management. Based on the facts, this research is going to identify wireless network communication systems to monitor and control smart grid power consumption. Primary survey-based research has been carried out with 62 individuals who worked in the smart grid system, tracked, monitored and controlled the power consumptions using WSN technology. The survey was conducted online where the respondents provided their opinions via a google survey form. The responses were collected and analyzed on Microsoft Excel. Results show that hybrid commuting of cloud and edge computing technology is more advantageous than individual computing. Respondents agreed that deep learning techniques will be more beneficial to analyze load profiles than machine learning techniques. Lastly, the study has explained the advantages and challenges of using smart grid network communication systems. Apart from the findings from primary research, secondary journal articles were also observed to emphasize the research findings.
2023-04-28
S, Arun, Prasad, Sanjana, Umamaheswari, G.  2022.  Clustering with Cross Layer Design against Spectrum Access Attack in Cognitive Radio Networks. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–4.
Cognitive Radio (CR) is an attractive solution in mobile communication for solving the spectrum scarcity problem. Moreover, security concerns are not yet fully satisfied. This article focuses on attacks such as the Primary user emulation attack (PUE) and the jammer attack. These attacks create anomalous spectrum access thereby disturbing the dynamic spectrum usage in the CR networks. A framework based on cross-layer has been designed effectively to determine these attacks in the CR networks. First, each secondary user will sense the spectrum in the physical layer and construct a feature space. Using the extracted features, the clusters are formed effectively for each user. In the network layer, multipath routing is employed to discover the routes for the secondary user. If the node in the path identifies any spectrum shortage, it will verify that location with the help of constructed cluster. If the node does not belong to any of the clusters, then it will be identified as the attacker node. Simulation results and security analysis are performed using the NS2 simulations, which show improvement in detection of the attacks, decrease in the detection delay, and less route dis-connectivity. The proposed cross-layer framework identifies the anomalous spectrum access attack effectively.
2023-07-21
Avula, Himaja, R, Ranjith, S Pillai, Anju.  2022.  CNN based Recognition of Emotion and Speech from Gestures and Facial Expressions. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :1360—1365.
The major mode of communication between hearing-impaired or mute people and others is sign language. Prior, most of the recognition systems for sign language had been set simply to recognize hand signs and convey them as text. However, the proposed model tries to provide speech to the mute. Firstly, hand gestures for sign language recognition and facial emotions are trained using CNN (Convolutional Neural Network) and then by training the emotion to speech model. Finally combining hand gestures and facial emotions to realize the emotion and speech.
2023-02-17
Tabatt, P., Jelonek, J., Schölzel, M., Lehniger, K., Langendörfer, P..  2022.  Code Mutation as a mean against ROP Attacks for Embedded Systems. 2022 11th Mediterranean Conference on Embedded Computing (MECO). :1–4.
This paper presents a program-code mutation technique that is applied in-field to embedded systems in order to create diversity in a population of systems that are identical at the time of their deployment. With this diversity, it becomes more difficult for attackers to carry out the very popular Return-Oriented-Programming (ROP) attack in a large scale, since the gadgets in different systems are located at different program addresses after code permutation. In order to prevent the system from a system crash after a failed ROP attack, we further propose the combination of the code mutation with a return address checking. We will report the overhead in time and memory along with a security analysis.
2023-04-28
Joon, Ranjita, Tomar, Parul.  2022.  Cognitive Radio Wireless Sensor Networks: A Survey. 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). :216–222.
There has been a significant rise in the use of wireless sensor networks (WSNs) in the past few years. It is evident that WSNs operate in unlicensed spectrum bands [1]. But due to the increasing usage in unlicensed spectrum band this band is getting overcrowded. The recent development of cognitive radio technology [2, 3] has made possible the utilization of licensed spectrum band in an opportunistic manner. This paper studies an introduction to Cognitive Radio Technology, Cognitive Radio Wireless Sensor Networks, its Advantages & Challenges, Cognitive Radio Technology Applications and a comparative analysis of node clustering techniques in CWSN.
2023-09-01
Liu, Zhenyu, Lou, Xuanyu, Cui, Yajun, Zhao, Yingdong, Li, Hua.  2022.  Colored Petri Net Reusing for Service Function Chaining Validation. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1531—1535.
With the development of software defined network and network function virtualization, network operators can flexibly deploy service function chains (SFC) to provide network security services more than before according to the network security requirements of business systems. At present, most research on verifying the correctness of SFC is based on whether the logical sequence between service functions (SF) in SFC is correct before deployment, and there is less research on verifying the correctness after SFC deployment. Therefore, this paper proposes a method of using Colored Petri Net (CPN) to establish a verification model offline and verify whether each SF deployment in SFC is correct after online deployment. After the SFC deployment is completed, the information is obtained online and input into the established model for verification. The experimental results show that the SFC correctness verification method proposed in this paper can effectively verify whether each SF in the deployed SFC is deployed correctly. In this process, the correctness of SF model is verified by using SF model in the model library, and the model reuse technology is preliminarily discussed.
2023-07-12
Ravi, Renjith V., Goyal, S. B., Islam, Sardar M N.  2022.  Colour Image Encryption Using Chaotic Trigonometric Map and DNA Coding. 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). :172—176.
The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA's outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
2023-02-17
Lehniger, Kai, Schölze, Mario, Jelonek, Jonas, Tabatt, Peter, Aftowicz, Marcin, Langendorfer, Peter.  2022.  Combination of ROP Defense Mechanisms for Better Safety and Security in Embedded Systems. 2022 25th Euromicro Conference on Digital System Design (DSD). :480–487.
Control flow integrity (CFI) checks are used in desktop systems, in order to protect them from various forms of attacks, but they are rarely investigated for embedded systems, due to their introduced overhead. The contribution of this paper is an efficient software implementation of a CFI-check for ARM-and Xtensa processors. Moreover, we propose the combination of this CFI-check with another defense mechanism against return-oriented-programming (ROP). We show that by this combination the security is significantly improved. Moreover, it will also in-crease the safety of the system, since the combination can detect a failed ROP-attack and bring the system in a safe state, which is not possible when using each technique separately. We will also report on the introduced overhead in code size and run time.
2023-07-18
Nguyen, Bien-Cuong, Pham, Cong-Kha.  2022.  A Combined Blinding-Shuffling Online Template Attacks Countermeasure Based on Randomized Domain Montgomery Multiplication. 2022 IEEE International Conference on Consumer Electronics (ICCE). :1—6.
Online template attacks (OTA), high-efficiency side-channel attacks, are initially presented to attack the elliptic curve scalar. The modular exponentiation is similarly vulnerable to OTA. The correlation between modular multiplication's intermediate products is a crucial leakage of the modular exponent. This paper proposed a practical OTA countermeasure based on randomized domain Montgomery multiplication, which combines blinding and shuffling methods to eliminate the correlation between modular multiplication's inner products without additional computation requirements. The proposed OTA countermeasure is implemented on the Sakura-G board with a suppose that the target board and template board are identical. The experiment results show that the proposed countermeasure is sufficient to protect the modular exponentiation from OTA.
2023-09-20
Preeti, Agrawal, Animesh Kumar.  2022.  A Comparative Analysis of Open Source Automated Malware Tools. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :226—230.
Malwares are designed to cause harm to the machine without the user's knowledge. Malwares belonging to different families infect the system in its own unique way causing damage which could be irreversible and hence there is a need to detect and analyse the malwares. Manual analysis of all types of malwares is not a practical approach due to the huge effort involved and hence Automated Malware Analysis is resorted to so that the burden on humans can be decreased and the process is made robust. A lot of Automated Malware Analysis tools are present right now both offline and online but the problem arises as to which tool to select while analysing a suspicious binary. A comparative analysis of three most widely used automated tools has been done with different malware class samples. These tools are Cuckoo Sandbox, Any. Run and Intezer Analyze. In order to check the efficacy of the tool in both online and offline analysis, Cuckoo Sandbox was configured for offline use, and Any. Run and Intezer Analyze were configured for online analysis. Individual tools analyse each malware sample and after analysis is completed, a comparative chart is prepared to determine which tool is good at finding registry changes, processes created, files created, network connections, etc by the malicious binary. The findings conclude that Intezer Analyze tool recognizes file changes better than others but otherwise Cuckoo Sandbox and Any. Run tools are better in determining other functionalities.
2023-08-11
Chethana, Savarala, Charan, Sreevathsa Sree, Srihitha, Vemula, Radha, D., Kavitha, C. R..  2022.  Comparative Analysis of Password Storage Security using Double Secure Hash Algorithm. 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon). :1—5.
Passwords are generally used to keep unauthorized users out of the system. Password hacking has become more common as the number of internet users has extended, causing a slew of issues. These problems include stealing the confidential information of a company or a country by adversaries which harm the economy or the security of the organization. Hackers often use password hacking for criminal activities. It is indispensable to protect passwords from hackers. There are many hacking methods such as credential stuffing, social engineering, traffic interception, and password spraying for hacking the passwords. So, in order to control hacking, there are hashing algorithms that are mostly used to hash passwords making password cracking more difficult. In this proposed work, different hashing algorithms such as SHA-1, MD-5, Salted MD-5, SHA-256, and SHA-512 have been used. And the MySQL database is used to store the hash values of passwords that are generated using various hash functions. It is proven that SHA is better than MD-5 and Salted MD-5. Whereas in the SHA family, SHA-512 and SHA-256 have their own benefits. Four new hashing functions have been proposed using the combination of existing algorithms like SHA-256, and SHA-512 namely SHA-256\_with\_SHA-256, SHA-256\_ With\_SHA-512,SHA-512\_With\_SHA-512,and SHA-512\_ With\_SHA-256. They provide strong hash value for passwords by which the security of passwords increases, and hacking can be controlled to an extent.
2023-03-17
Dash, Lipsa, Sharma, Sanjeev, M, Manish, M, Chaitanya, P, Vamsi Krishna, Manna, Souvik.  2022.  Comparative Analysis of Secured Transport Systems using RFID Technology for Schools. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–6.
Despite the strict measures taken by authorities for children safety, crime against children is increasing. To curb this crime, it is important to improve the safety of children. School authorities can be severely penalized for these incidents, hence monitoring the school bus is significantly important in limiting these incidents. The developing worry of families for the security and insurance of their kids has started incredible interest in creating strong frameworks that give successful following and oversight of kids driving among home and school. Coordinated transport following permits youngsters to partake more in their normal schoolwork longer than trusting that a transport will be late with the assistance of notice and guarantees the security of every understudy. These days, reacting to the necessities existing apart from everything else, numerous instructive foundations have begun to push more towards a compelling global positioning framework of their vehicles that ensures the wellbeing of their understudies. Effective transport following is accomplished by procuring the geographic directions utilizing the GPS module and communicating the informationto a distant server. The framework depends on prepared to-utilize inactive RFID peruses. Make a message pop-up from the server script subsequent to checking the understudy's RFID tag be. The RFID examine exhibiting that the understudy boarded the vehicle to the specific trained professionals and the parent. Successful transport following permits school specialists, guardians, and drivers to precisely design their schedules while protecting kids from the second they get on until they get off the transport. The framework overall makes it conceivable to educate the administration regarding crises or protests. A variety of reports can be generated for different school-wide real-time bus and vehicle activities. This paper reviews the various smart security transport systems proposed for providing security features.
2023-07-11
Yarlagadda, Venu, Garikapati, Annapurna Karthika, Gadupudi, Lakshminarayana, Kapoor, Rashmi, Veeresham, K..  2022.  Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—8.
To ensure dynamic and transient angle and load stability in order to maintain the power system security is a major task of the power Engineer. FACTS Controllers are most effective devices to ensure system security by enhancing the stability margins with reactive power support all over the power system network. The major shunt compensation devices of FACTS are SVC and STATCOM. This article dispenses the modelling and simulation of both the shunt devices viz. Oneis the Static Synchronous Compensator (STATCOM) and the other is Static Var Compensator (SVC). The small signal models of these devices have been derived from the first principles and obtained the transfer function models of weak and strong power systems. The weak power system has the Short Circuit Ratio (SCR) is about less than 3 and that of the strong power system has the SCR of more than 5. The performance of the both weak and strong power systems has been evaluated with time and frequency responses. The dynamic response is obtained with the exact models for both weak and strong systems, subsequently the root locus plots as well as bode plots have been obtained with MATLAB Programs and evaluated the performance of these devices and comparison is made. The Stability margins of both the systems with SVC and STATCOM have been obtained from the bode plots. The dynamic behaviour of the both kinds of power systems have been assessed with time responses of SVC and STATCOM models. All of these results viz. dynamic response, root locus and bode plots proves the superiority of the STATCOM over SVC with indices, viz. peak overshoot, settling time, gain margin and phase margins. The dynamic, steady state performance indices obtained from time response and bode plots proves the superior performance of STATCOM.
2023-02-03
Sarasjati, Wendy, Rustad, Supriadi, Purwanto, Santoso, Heru Agus, Muljono, Syukur, Abdul, Rafrastara, Fauzi Adi, Ignatius Moses Setiadi, De Rosal.  2022.  Comparative Study of Classification Algorithms for Website Phishing Detection on Multiple Datasets. 2022 International Seminar on Application for Technology of Information and Communication (iSemantic). :448–452.
Phishing has become a prominent method of data theft among hackers, and it continues to develop. In recent years, many strategies have been developed to identify phishing website attempts using machine learning particularly. However, the algorithms and classification criteria that have been used are highly different from the real issues and need to be compared. This paper provides a detailed comparison and evaluation of the performance of several machine learning algorithms across multiple datasets. Two phishing website datasets were used for the experiments: the Phishing Websites Dataset from UCI (2016) and the Phishing Websites Dataset from Mendeley (2018). Because these datasets include different types of class labels, the comparison algorithms can be applied in a variety of situations. The tests showed that Random Forest was better than other classification methods, with an accuracy of 88.92% for the UCI dataset and 97.50% for the Mendeley dataset.
2023-01-05
Singh, Pushpa Bharti, Tomar, Parul, Kathuria, Madhumita.  2022.  Comparative Study of Machine Learning Techniques for Intrusion Detection Systems. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:274—283.
Being a part of today’s technical world, we are connected through a vast network. More we are addicted to these modernization techniques we need security. There must be reliability in a network security system so that it is capable of doing perfect monitoring of the whole network of an organization so that any unauthorized users or intruders wouldn’t be able to halt our security breaches. Firewalls are there for securing our internal network from unauthorized outsiders but still some time possibility of attacks is there as according to a survey 60% of attacks were internal to the network. So, the internal system needs the same higher level of security just like external. So, understanding the value of security measures with accuracy, efficiency, and speed we got to focus on implementing and comparing an improved intrusion detection system. A comprehensive literature review has been done and found that some feature selection techniques with standard scaling combined with Machine Learning Techniques can give better results over normal existing ML Techniques. In this survey paper with the help of the Uni-variate Feature selection method, the selection of 14 essential features out of 41 is performed which are used in comparative analysis. We implemented and compared both binary class classification and multi-class classification-based Intrusion Detection Systems (IDS) for two Supervised Machine Learning Techniques Support Vector Machine and Classification and Regression Techniques.