Skip to Main Content Area
CPS-VO
Contact Support
Browse
Calendar
Announcements
Repositories
Groups
Search
Search for Content
Search for a Group
Search for People
Search for a Project
Tagcloud
› Go to login screen
Not a member?
Click here to register!
Forgot username or password?
Cyber-Physical Systems Virtual Organization
Read-only archive of site from September 29, 2023.
CPS-VO
»
Projects
CPS: Medium: Collaborative Research: The Foundations of Implicit and Explicit Communication in Cyberphysical Systems
View
Submitted by anantsahai on Thu, 04/07/2011 - 5:24pm
Project Details
Lead PI:
Anant Sahai
Performance Period:
09/15/09
-
08/31/13
Institution(s):
University of California-Berkeley
Sponsor(s):
National Science Foundation
Award Number:
0932410
1667 Reads. Placed 172 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract:
The objective of this research is to develop the theoretical foundations for understanding implicit and explicit communication within cyber-physical systems. The approach is two-fold: (a) developing new information-theoretic tools to reveal the essential nature of implicit communication in a manner analogous to (and compatible with) classical network information theory; (b) viewing the wireless ecosystem itself as a cyber-physical system in which spectrum is the physical substrate that is manipulated by heterogeneous interacting cyber-systems that must be certified to meet safety and performance objectives. The intellectual merit of this project comes from the transformative technical approaches being developed. The key to understanding implicit communication is a conceptual breakthrough in attacking the unsolved 40-year-old Witsenhausen counterexample by using an approximate-optimality paradigm combined with new ideas from sphere-packing and cognitive radio channels. These techniques open up radically new mathematical avenues to attack distributed-control problems that have long been considered fundamentally intractable. They guide the development of nonlinear control strategies that are provably orders-of-magnitude better than the best linear strategies. The keys to understanding explicit communication in cyber-physical systems are new approaches to active learning, detection, and estimation in distributed environments that combine worst-case and probabilistic elements. Beyond the many diverse applications (the Internet, the smart grid, intelligent transportation, etc.) of heterogeneous cyber-physical systems themselves, this research reaches out to wireless policy: allowing the principled formulation of government regulations for next-generation networks. Graduate students (including female ones) and postdoctoral scholars will be trained and research results incorporated into both the undergraduate and graduate curricula.
2 attachments
PDF version
Printer-friendly version
CPS Domains
Communication
Control
Education
Foundations