Biblio
The Security Behavior Observatory (SBO) is a longitudinal field-study of computer security habits that provides a novel dataset for validating computer security metrics. This paper demonstrates a new strategy for validating phishing detection ability metrics by comparing performance on a phishing signal detection task with data logs found in the SBO. We report: (1) a test of the robustness of performance on the signal detection task by replicating Canfield, Fischhoff and Davis (2016), (2) an assessment of the task's construct validity, and (3) evaluation of its predictive validity using data logs. We find that members of the SBO sample had similar signal detection ability compared to members of the previous mTurk sample and that performance on the task correlated with the Security Behavior Intentions Scale (SeBIS). However, there was no evidence of predictive validity, as the signal detection task performance was unrelated to computer security outcomes in the SBO, including the presence of malicious URLs, malware, and malicious files. We discuss the implications of these findings and the challenges of comparing behavior on structured experimental tasks to behavior in complex real-world settings.
Computer security problems often occur when there are disconnects between users’ understanding of their role in computer security and what is expected of them. To help users make good security decisions more easily, we need insights into the challenges they face in their daily computer usage. We built and deployed the Security Behavior Observatory (SBO) to collect data on user behavior and machine configurations from participants’ home computers. Combining SBO data with user interviews, this paper presents a qualitative study comparing users’ attitudes, behaviors, and understanding of computer security to the actual states of their computers. Qualitative inductive thematic analysis of the interviews produced “engagement” as the overarching theme, whereby participants with greater engagement in computer security and maintenance did not necessarily have more secure computer states. Thus, user engagement alone may not be predictive of computer security. We identify several other themes that inform future directions for better design and research into security interventions. Our findings emphasize the need for better understanding of how users’ computers get infected, so that we can more effectively design user-centered mitigations.
Risk homeostasis theory claims that individuals adjust their behaviors in response to changing variables to keep what they perceive as a constant accepted level of risk [8]. Risk homeostasis theory is used to explain why drivers may drive faster when wearing seatbelts. Here we explore whether risk homeostasis theory applies to end-user security behaviors. We use observed data from over 200 participants in a longitudinal in-situ study as well as survey data from 249 users to attempt to determine how user security behaviors and attitudes are affected by the presence or absence of antivirus software. If risk compensation is occurring, users might be expected to behave more dangerously in some ways when antivirus is present. Some of our preliminary data suggests that risk compensation may be occurring, but additional work with larger samples is needed.