Visible to the public Biblio

Filters: Author is Al-Shaer, Ehab  [Clear All Filters]
2017-07-06
Burcham, Morgan, Al-Zyoud, Mahran, Carver, Jeffrey C., Alsaleh, Mohammed, Du, Hongying, Gilani, Fida, Jiang, Jun, Rahman, Akond, Kafalı, Özgür, Al-Shaer, Ehab et al..  2017.  Characterizing Scientific Reporting in Security Literature: An Analysis of ACM CCS and IEEE S&P Papers. Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. :13–23.

Scientific advancement is fueled by solid fundamental research, followed by replication, meta-analysis, and theory building. To support such advancement, researchers and government agencies have been working towards a "science of security". As in other sciences, security science requires high-quality fundamental research addressing important problems and reporting approaches that capture the information necessary for replication, meta-analysis, and theory building. The goal of this paper is to aid security researchers in establishing a baseline of the state of scientific reporting in security through an analysis of indicators of scientific research as reported in top security conferences, specifically the 2015 ACM CCS and 2016 IEEE S&P proceedings. To conduct this analysis, we employed a series of rubrics to analyze the completeness of information reported in papers relative to the type of evaluation used (e.g. empirical study, proof, discussion). Our findings indicated some important information is often missing from papers, including explicit documentation of research objectives and the threats to validity. Our findings show a relatively small number of replications reported in the literature. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.

2015-01-11
Rahman, Mohammad Ashiqur, Al-Shaer, Ehab, Bobba, Rakesh B..  2014.  Moving Target Defense for Hardening the Security of the Power System State Estimation. First ACM Workshop on Moving Target Defense.

State estimation plays a critically important role in ensuring the secure and reliable operation of the electric grid. Recent works have shown that the state estimation process is vulnerable to stealthy attacks where an adversary can alter certain measurements to corrupt the solution of the process, but evade the existing bad data detection algorithms and remain invisible to the system operator. Since the state estimation result is used to compute optimal power flow and perform contingency analysis, incorrect estimation can undermine economic and secure system operation. However, an adversary needs sufficient resources as well as necessary knowledge to achieve a desired attack outcome. The knowledge that is required to launch an attack mainly includes the measurements considered in state estimation, the connectivity among the buses, and the power line admittances. Uncertainty in information limits the potential attack space for an attacker. This advantage of uncertainty enables us to apply moving target defense (MTD) strategies for developing a proactive defense mechanism for state estimation.

In this paper, we propose an MTD mechanism for securing state estimation, which has several characteristics: (i) increase the knowledge uncertainty for attackers, (ii) reduce the window of attack opportunity, and (iii) increase the attack cost. In this mechanism, we apply controlled randomization on the power grid system properties, mainly on the set of measurements that are considered in state estimation, and the topology, especially the line admittances. We thoroughly analyze the performance of the proposed mechanism on the standard IEEE 14- and 30-bus test systems.