Biblio
Sandboxes impose a security policy, isolating applications
and their components from the rest of a system. While
many sandboxing techniques exist, state of the art sandboxes
generally perform their functions within the system
that is being defended. As a result, when the sandbox fails
or is bypassed, the security of the surrounding system can
no longer be assured. We experiment with the idea of innimbo
sandboxing, encapsulating untrusted computations
away from the system we are trying to protect. The idea
is to delegate computations that may be vulnerable or malicious
to virtual machine instances in a cloud computing
environment.
This may not reduce the possibility of an in-situ sandbox
compromise, but it could significantly reduce the consequences
should that possibility be realized. To achieve this
advantage, there are additional requirements, including: (1)
A regulated channel between the local and cloud environments
that supports interaction with the encapsulated application,
(2) Performance design that acceptably minimizes
latencies in excess of the in-situ baseline.
To test the feasibility of the idea, we built an in-nimbo
sandbox for Adobe Reader, an application that historically
has been subject to significant attacks. We undertook a
prototype deployment with PDF users in a large aerospace
firm. In addition to thwarting several examples of existing
PDF-based malware, we found that the added increment of
latency, perhaps surprisingly, does not overly impair the