Visible to the public Biblio

Filters: Author is Li, Bo  [Clear All Filters]
2016-04-07
Ke, Liyiming, Li, Bo, Vorobeychik, Yevgeniy.  2016.  Behavioral Experiments in Email Filter Evasion.

Despite decades of effort to combat spam, unwanted and even malicious emails, such as phish which aim to deceive recipients into disclosing sensitive information, still routinely find their way into one’s mailbox. To be sure, email filters manage to stop a large fraction of spam emails from ever reaching users, but spammers and phishers have mastered the art of filter evasion, or manipulating the content of email messages to avoid being filtered. We present a unique behavioral experiment designed to study email filter evasion. Our experiment is framed in somewhat broader terms: given the widespread use of machine learning methods for distinguishing spam and non-spam, we investigate how human subjects manipulate a spam template to evade a classification-based filter. We find that adding a small amount of noise to a filter significantly reduces the ability of subjects to evade it, observing that noise does not merely have a short-term impact, but also degrades evasion performance in the longer term. Moreover, we find that greater coverage of an email template by the classifier (filter) features significantly increases the difficulty of evading it. This observation suggests that aggressive feature reduction—a common practice in applied machine learning—can actually facilitate evasion. In addition to the descriptive analysis of behavior, we develop a synthetic model of human evasion behavior which closely matches observed behavior and effectively replicates experimental findings in simulation.

2015-11-12
Li, Bo, Vorobeychik, Yevgeniy, Li, Muqun, Malin, Bradley.  2015.  Iterative Classification for Sanitizing Large-Scale Datasets. SIAM International Conference on Data Mining.

Cheap ubiquitous computing enables the collectionof massive amounts of personal data in a wide variety of domains.Many organizations aim to share such data while obscuring fea-tures that could disclose identities or other sensitive information.Much of the data now collected exhibits weak structure (e.g.,natural language text) and machine learning approaches havebeen developed to identify and remove sensitive entities in suchdata. Learning-based approaches are never perfect and relyingupon them to sanitize data can leak sensitive information as aconsequence. However, a small amount of risk is permissiblein practice, and, thus, our goal is to balance the value ofdata published and the risk of an adversary discovering leakedsensitive information. We model data sanitization as a gamebetween 1) a publisher who chooses a set of classifiers to applyto data and publishes only instances predicted to be non-sensitiveand 2) an attacker who combines machine learning and manualinspection to uncover leaked sensitive entities (e.g., personal names). We introduce an iterative greedy algorithm for thepublisher that provably executes no more than a linear numberof iterations, and ensures a low utility for a resource-limitedadversary. Moreover, using several real world natural languagecorpora, we illustrate that our greedy algorithm leaves virtuallyno automatically identifiable sensitive instances for a state-of-the-art learning algorithm, while sharing over 93% of the original data, and completes after at most 5 iterations.

2015-03-03
Li, Bo, Vorobeychik, Yevgeniy.  2014.  Feature Cross-Substitution in Adversarial Classification. Advances in Neural Information Processing Systems 27. :2087–2095.

The success of machine learning, particularly in supervised settings, has led to numerous attempts to apply it in adversarial settings such as spam and malware detection. The core challenge in this class of applications is that adversaries are not static data generators, but make a deliberate effort to evade the classifiers deployed to detect them. We investigate both the problem of modeling the objectives of such adversaries, as well as the algorithmic problem of accounting for rational, objective-driven adversaries. In particular, we demonstrate severe shortcomings of feature reduction in adversarial settings using several natural adversarial objective functions, an observation that is particularly pronounced when the adversary is able to substitute across similar features (for example, replace words with synonyms or replace letters in words). We offer a simple heuristic method for making learning more robust to feature cross-substitution attacks. We then present a more general approach based on mixed-integer linear programming with constraint generation, which implicitly trades off overfitting and feature selection in an adversarial setting using a sparse regularizer along with an evasion model. Our approach is the first method for combining an adversarial classification algorithm with a very general class of models of adversarial classifier evasion. We show that our algorithmic approach significantly outperforms state-of-the-art alternatives.