Visible to the public A Hypothesis Testing Framework for Network Security - April 2015Conflict Detection Enabled

Public Audience
Purpose: To highlight project progress. Information is generally at a higher level which is accessible to the interested public. All information contained in the report (regions 1-3) is a Government Deliverable/CDRL.

PI(s): P. Brighten Godfrey

Co-PI(s): Matthew Caesar, David Nicol, William Sanders, and Kevin Jin (Illinois Institute of Technology)

HARD PROBLEM(S) ADDRESSED
This refers to Hard Problems, released November 2012.

This project covers four hard problems:

  • Scalability and composability
  • Policy-governed secure collaboration
  • Predictive security metrics
  • Resilient architectures

PUBLICATIONS
Papers published in this quarter as a result of this research. Include title, author(s), venue published/presented, and a short description or abstract. Identify which hard problem(s) the publication addressed. Papers that have not yet been published should be reported in region 2 below.

No new accepted publications this quarter.

ACCOMPLISHMENT HIGHLIGHTS

The increasingly complex, large-scale nature of networks makes it difficult for network architects, security officers, and operators to understand their own networks' behavior. Even very simple behaviors -- such as whether it is possible for any packet (however unusual) to flow between two devices -- are difficult for operators to test, and synthesizing these low-level behaviors into a high-level quantitative understanding of network security has been beyond reach. This project is developing the analysis methodology needed to support scientific reasoning about the security of networks, with a particular focus on information and data flow security. The core of this vision is Network Hypothesis Testing Methodology (NetHTM), a set of techniques for performing and integrating security analyses applied at different network layers, in different ways, to pose and rigorously answer quantitative hypotheses about the end-to-end security of a network. This project is building both theoretical underpinnings and a practical realization of Science of Security.