Skip to Main Content Area
CPS-VO
Contact Support
Browse
Calendar
Announcements
Repositories
Groups
Search
Search for Content
Search for a Group
Search for People
Search for a Project
Tagcloud
› Go to login screen
Not a member?
Click here to register!
Forgot username or password?
Cyber-Physical Systems Virtual Organization
Read-only archive of site from September 29, 2023.
CPS-VO
»
Projects
CPS: Medium: Collaborative Research: A CPS Approach to Robot Design
View
Submitted by AAmes on Tue, 12/06/2011 - 9:37am
Project Details
Lead PI:
Aaron Ames
Performance Period:
09/15/11
-
11/30/15
Institution(s):
Texas Engineering Experiment Station
Sponsor(s):
National Science Foundation
Award Number:
1136104
1990 Reads. Placed 140 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract:
In many important situations, analytically predicting the behavior of physical systems is not possible. For example, the three dimensional nature of physical systems makes it provably impossible to express closed-form analytical solutions for even the simplest systems. This has made experimentation the primary modality for designing new cyber-ph0.00000..0000... 0ysical systems (CPS). Since physical prototyping and experiments are typically costly and hard to conduct, "virtual experiments" in the form of modeling and simulation can dramatically accelerate innovation in CPS. Unfortunately, major technical challenges often impede the effectiveness of modeling and simulation. This project develops foundations and tools for overcoming these challenges. The project focuses on robotics as an important, archetypical class of CPS, and consists of four key tasks: 1) Compiling and analyzing a benchmark suite for modeling and simulating robots, 2) Developing a meta-theory for relating cyber-physical models, as well as tools and a test bed for robot modeling and simulation, 3) Validating the research results of the project using two state-of-the-art robot platforms that incorporate novel control technologies and will require novel programming techniques to fully realize their potential 4) Developing course materials incorporating the project's research results and test bed. With the aim of accelerating innovation in a wide range of domains including stroke rehabilitation and prosthetic limbs, the project is developing new control concepts and modeling and simulation technologies for robotics. In addition to new mathematical foundations, models, and validation methods, the project will also develop software tools and systematic methods for using them. The project trains four doctoral students; develops a new course on modeling and simulation for cyber-physical systems that balances both control and programming concepts; and includes an outreach component to the public and to minority-serving K-12 programs.
2 attachments
PDF version
Printer-friendly version
CPS Domains
Modeling
Robotics
Simulation
Foundations