Skip to Main Content Area
CPS-VO
Contact Support
Browse
Calendar
Announcements
Repositories
Groups
Search
Search for Content
Search for a Group
Search for People
Search for a Project
Tagcloud
› Go to login screen
Not a member?
Click here to register!
Forgot username or password?
Cyber-Physical Systems Virtual Organization
Read-only archive of site from September 29, 2023.
CPS-VO
»
Projects
CPS: Medium: Collaborative Research: Design Science for CPS
View
Submitted by DGajski on Tue, 12/06/2011 - 3:09pm
Project Details
Lead PI:
Daniel Gajski
Co-PI(s):
Frank Vahid
givargis
Performance Period:
09/01/11
-
08/31/16
Institution(s):
University of California-Irvine
Sponsor(s):
National Science Foundation
Award Number:
1136146
2734 Reads. Placed 77 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract:
A CPS is a system in which computer-based (cyber) technology is combined with all kinds of physical systems, such as planes and robotic-surgeons. CPSs require integration (in industry and academia) of different types of knowledge from many different domains. CPSs are built from often inaccurate, undependable components, and operate in harsh and unpredictable environments. The cyber domain, interfaces, and the physical domain are tightly interwoven and networked (distributed) and hence cannot be designed and optimized individually. The goal of this project is to create a general CPS design-science that makes the design of every CPS simpler, faster, and more dependable, while at the same time reducing the cost and the required expertise level. This project gives rise to a unified theory that can allow for specification, modeling, design, optimization, and verification of CPSs on different levels of design abstraction and different steps of projection, even across boundaries between varied technologies. The project does bridge the gap between the continuous-time physical domain and the discrete timed cyber system. This project has a broad and profound impact in scientific, engineering, industrial, and academic communities. By enabling a fundamentally efficient design of CPSs, the most limiting bottleneck in design technology is eliminated, paving the way for many new applications and jobs with significant economic and social impact. This project contributes to the on-line educational endeavors currently underway, allowing cross education in different disciplines of complex CPS and speeding up development of new CPS programs in engineering and computer science.
2 attachments
PDF version
Printer-friendly version
Design Automation Tools
Control
Modeling
CPS Technologies
Foundations