Biblio
Presented at the 11th European Dependable Computing Conference-Dependabiltiy in Practice (EDCC 2015), September 2015.
Presented at a tutorial at the Symposium and Bootcamp on the Science of Security (HotSoS 2015), April 2015.
Presented at the NSA SoS Quarterly Lablet Meeting, January 2015 by Ravi Iyer.
Presented at the Illinois SoS Bi-Weekly Meeting, February 2015 by Phuong Cao.
Presented at the NSA Science of Security Quarterly Meeting, October 2014 and the Illinois SoS Bi-Weekly Meeting, November 2014.
Today's cyber-physical systems (CPSs) can have very different characteristics in terms of control algorithms, configurations, underlying infrastructure, communication protocols, and real-time requirements. Despite these variations, they all face the threat of malicious attacks that exploit the vulnerabilities in the cyber domain as footholds to introduce safety violations in the physical processes. In this paper, we focus on a class of attacks that impact the physical processes without introducing anomalies in the cyber domain. We present the common challenges in detecting this type of attacks in the contexts of two very different CPSs (i.e., power grids and surgical robots). In addition, we present a general principle for detecting such cyber-physical attacks, which combine the knowledge of both cyber and physical domains to estimate the adverse consequences of malicious activities in a timely manner.
This paper presents a framework for (1) generating variants of known attacks, (2) replaying attack variants in an isolated environment and, (3) validating detection capabilities of attack detection techniques against the variants. Our framework facilitates reproducible security experiments. We generated 648 variants of three real-world attacks (observed at the National Center for Supercomputing Applications at the University of Illinois). Our experiment showed the value of generating attack variants by quantifying the detection capabilities of three detection methods: a signature-based detection technique, an anomaly-based detection technique, and a probabilistic graphical model-based technique.
Recent attacks show that threats to cyber infrastructure are not only increasing in volume, but are getting more sophisticated. The attacks may comprise multiple actions that are hard to differentiate from benign activity, and therefore common detection techniques have to deal with high false positive rates. Because of the imperfect performance of automated detection techniques, responses to such attacks are highly dependent on human-driven decision-making processes. While game theory has been applied to many problems that require rational decisionmaking, we find limitation on applying such method on security games. In this work, we propose Q-Learning to react automatically to the adversarial behavior of a suspicious user to secure the system. This work compares variations of Q-Learning with a traditional stochastic game. Simulation results show the possibility of Naive Q-Learning, despite restricted information on opponents.
Presented at the NSA Science of Security Quarterly Meeting, July 2016.
The human factor is often regarded as the weakest link in cybersecurity systems. The investigation of several security breaches reveals an important impact of human errors in exhibiting security vulnerabilities. Although security researchers have long observed the impact of human behavior, few improvements have been made in designing secure systems that are resilient to the uncertainties of the human element.
In this talk, we discuss several psychological theories that attempt to understand and influence the human behavior in the cyber world. Our goal is to use such theories in order to build predictive cyber security models that include the behavior of typical users, as well as system administrators. We then illustrate the importance of our approach by presenting a case study that incorporates models of human users. We analyze our preliminary results and discuss their challenges and our approaches to address them in the future.
Presented at the ITI Joint Trust and Security/Science of Security Seminar, October 20, 2016.
Presented at the Illinois Science of Security Bi-weekly Meeting, April 2015.
Presented at the Illinois SoS Bi-weekly Meeting, February 2015.
Presented at the Illinois SoS Bi-weekly Meeting, December 2014.
Presented at NSA Science of Security Quarterly Meeting, July 2014.
Reliability block diagram (RBD) models are a commonly used reliability analysis method. For static RBD models, combinatorial solution techniques are easy and efficient. However, static RBDs are limited in their ability to express varying system state, dependent events, and non-series-parallel topologies. A recent extension to RBDs, called Dynamic Reliability Block Diagrams (DRBD), has eliminated those limitations. This tool paper details the RBD implementation in the M¨obius modeling framework and provides technical details for using RBDs independently or in composition with other M¨obius modeling formalisms. The paper explains how the graphical front-end provides a user-friendly interface for specifying RBD models. The back-end implementation that interfaces with the M¨obius AFI to define and generate executable models that the M¨obius tool uses to evaluate system metrics is also detailed.
Reliability block diagram (RBD) models are a commonly used reliability analysis method. For static RBD models, combinatorial solution techniques are easy and efficient. However, static RBDs are limited in their ability to express varying system state, dependent events, and non-series-parallel topologies. A recent extension to RBDs, called Dynamic Reliability Block Diagrams (DRBD), has eliminated those limitations. This tool paper details the RBD implementation in the M¨obius modeling framework and provides technical details for using RBDs independently or in composition with other M¨obius modeling formalisms. The paper explains how the graphical front-end provides a user-friendly interface for specifying RBD models. The back-end implementation that interfaces with the M¨obius AFI to define and generate executable models that the M¨obius tool uses to evaluate system metrics is also detailed.
Commercial networks today have diverse security policies, defined by factors such as the type of traffic they carry, nature of applications they support, access control objectives, organizational principles etc. Ideally, the wide diversity in SDN controller frameworks should prove helpful in correctly and efficiently enforcing these policies. However, this has not been the case so far. By requiring the administrators to implement both security as well as performance objectives in the SDN controller, these frameworks have made the task of security policy enforcement in SDNs a challenging one. We observe that by separating security policy enforcement from performance optimization, we can facilitate the use of SDN for flexible policy management. To this end, we propose Oreo, a transparent performance enhancement layer for SDNs. Oreo allows SDN controllers to focus entirely on a correct security policy enforcement, and transparently optimizes the dataplane thus defined, reducing path stretch, switch memory consumption etc. Optimizations are performed while guaranteeing that end-to-end reachability characteristics are preserved – meaning that the security policies defined by the controller are not violated. Oreo performs these optimizations by first constructing a network-wide model describing the behavior of all traffic, and then optimizing the paths observed in the model by solving a multi-objective optimization problem. Initial experiments suggest that the techniques used by Oreo is effective, fast, and can scale to commercial-sized networks.
Presented at NSA SoS Quarterly Meeting, July 2016 and November 2016
Modern industrial control systems (ICSes) are increasingly adopting Internet technology to boost control efficiency, which unfortunately opens up a new frontier for cyber-security. People have typically applied existing Internet security techniques, such as firewalls, or anti-virus or anti-spyware software. However, those security solutions can only provide fine-grained protection at single devices. To address this, we design a novel software-defined networking (SDN) architecture that offers the global visibility of a control network infrastructure, and we investigate innovative SDN-based applications with the focus of ICS security, such as network verification and self-healing phasor measurement unit (PMU) networks. We are also conducting rigorous evaluation using the IIT campus microgrid as well as a high-fidelity testbed combining network emulation and power system simulation.
Illinois Lablet Information Trust Institute, Joint Trust and Security/Science of Security Seminar, by Dong (Kevin) Jin, March 15, 2016.
Modern industrial control systems (ICSes) are increasingly adopting Internet technology to boost control efficiency, which unfortunately opens up a new frontier for cyber-security. People have typically applied existing Internet security techniques, such as firewalls, or anti-virus or anti-spyware software. However, those security solutions can only provide fine-grained protection at single devices. To address this, we design a novel software-defined networking (SDN) architecture that offers the global visibility of a control network infrastructure, and we investigate innovative SDN-based applications with the focus of ICS security, such as network verification and self-healing phasor measurement unit (PMU) networks. We are also conducting rigorous evaluation using the IIT campus microgrid as well as a high-fidelity testbed combining network emulation and power system simulation.
Presented at the Illinois ITI Trust and Security/Science of Security Seminar, March 15, 2016.
We rely on network infrastructure to deliver critical services and ensure security. Yet networks today have reached a level of complexity that is far beyond our ability to have confidence in their correct behavior – resulting in significant time investment and security vulnerabilities that can cost millions of dollars, or worse. Motivated by this need for rigorous understanding of complex networks, I will give an overview of our or Science of Security lablet project, A Hypothesis Testing Framework for Network Security.
First, I will discuss the emerging field of network verification, which transforms network security by rigorously checking that intended behavior is correctly realized across the live running network. Our research developed a technique called data plane verification, which has discovered problems in operational environments and can verify hypotheses and security policies with millisecond-level latency in dynamic networks. In just a few years, data plane verification has moved from early research prototypes to production deployment. We have built on this technique to reason about hypotheses even under the temporal uncertainty inherent in a large distributed network. Second, I will discuss a new approach to reasoning about networks as databases that we can query to determine answers to behavioral questions and to actively control the network. This talk will span work by a large group of folks, including Anduo Wang, Wenxu an Zhou, Dong Jin, Jason Croft, Matthew Caesar, Ahmed Khurshid, and Xuan Zou.
Presented at the Illinois ITI Joint Trust and Security/Science of Security Seminar, September 15, 2015.
Presented to the Illinois SoS Bi-weekly Meeting, April 2015.
Presented at the Illinois SoS Bi-Weekly Meeting, February 2015.
Presented as part of the Illinois SoS Bi-weekly Meeting, October 2014.
Best Poster Award, Workshop on Science of Security through Software-Defined Networking, Chicago, IL, June 16-17, 2016.
Presented at the NSA Science of Security Quarterly Meeting, July 2016.