Skip to Main Content Area
CPS-VO
Contact Support
Browse
Calendar
Announcements
Repositories
Groups
Search
Search for Content
Search for a Group
Search for People
Search for a Project
Tagcloud
› Go to login screen
Not a member?
Click here to register!
Forgot username or password?
Cyber-Physical Systems Virtual Organization
Read-only archive of site from September 29, 2023.
CPS-VO
»
Projects
CPS: Synergy: Collaborative Research: Boolean Microgrid
View
Submitted by mazumder on Fri, 12/18/2015 - 2:34pm
Project Details
Lead PI:
Sudip Mazumder
Performance Period:
10/01/12
-
09/30/16
Institution(s):
University of Illinois at Chicago
Sponsor(s):
National Science Foundation
Award Number:
1239118
1186 Reads. Placed 287 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract:
The Boolean Microgrid (BM) emulates the Internet by supplying discrete power and discrete data over a network link that follows Boolean logic and is not continuous as in a conventional 60-Hz-ac or dc microgrid. BM is thus a highly integrated cyber-physical system (CPS) that features the convergence of control, communication and the physical plant. BM?s realization poses the following research challenges that we plan to address: a) what is the most efficient, economic, power-dense, and reliable way of integrating the distributed energy sources and loads to the BM, and the BM to the utility grid, using power-electronic interfaces for seamless and on-demand distributed power delivery? b) what is the control-communication mechanism that optimizes BM nodal and network control performances under conditions of varying power generation and load demand and communication-network throughput and reliability? Our unique approaches to address these research challenges will encompass novel mechanisms based on high-frequency-link power conversion, dynamic-pricing based optimal network capacity and resource utilization, event-triggered sampling and communication, and optimal switching-sequence control. BM has the potential to influence next-generation systems including smart grid, vehicular microgrid, electric ships, military microgrid, electric aircraft, telecommunication systems, and residential, commercial, and critical-infrastructure (e.g., hospital) power systems. On the educational front, the proposed project will provide graduate- and post-graduate-level education to four researchers. Further, multiple undergraduate (including minority) students and middle-school students will be provided research/educational opportunities. The results of the research will be integrated into undergraduate and graduate courses at the collaborating universities including a dedicated course on CPS.
2 attachments
PDF version
Printer-friendly version
CPS Domains
Energy Sector
Smart Grid
Energy
Critical Infrastructure