Skip to Main Content Area
CPS-VO
Contact Support
Browse
Calendar
Announcements
Repositories
Groups
Search
Search for Content
Search for a Group
Search for People
Search for a Project
Tagcloud
› Go to login screen
Not a member?
Click here to register!
Forgot username or password?
Cyber-Physical Systems Virtual Organization
Read-only archive of site from September 29, 2023.
CPS-VO
»
Projects
CPS: Synergy: Software Defined Buildings
View
Submitted by David Culler on Fri, 12/18/2015 - 5:29pm
Project Details
Lead PI:
David Culler
Co-PI(s):
Francesco Borrelli
Randy Katz
Performance Period:
10/01/12
-
09/30/16
Institution(s):
University of California at Berkeley
Sponsor(s):
National Science Foundation
Project URL:
http://sdb.cs.berkeley.edu/sdb/index.php
Award Number:
1239552
1237 Reads. Placed 272 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract:
This Cyber-Physical Systems project designs and evaluates a foundational information substrate for efficient, agile, model-driven, human-centered building systems. The approach is to develop software-defined buildings, to shatter existing stovepipe architectures, dramatically reduce the effort to add new functions and applications without forklift upgrades, and expand communications and control capabilities beyond a single stand-alone building to enable groups of buildings to behave cooperatively and in cooperation with the energy grid. We investigate how such Software-Defined Buildings can be founded on a flexible, multi-service and open Building Integrated Operating System (BIOS) that allows applications to run reliably in safe, sandboxed environments. It supports sensor and actuator access, access management, metadata, archiving, and discovery, as well as multiple simultaneously executing programs. Building operators retain supervisory management, controlling application separation physically (access different controls), temporally (change controls at different times), informationally (what information leaves the building), and logically (what actions or sequences thereof are allowable). We construct, deploy, and demonstrate the capabilities of a prototype BIOS in the context of university, residential buildings and closely related industrial processes. Making buildings more efficient, while keeping occupants comfortable, productive, and healthy, is critical to our economy and health. Transforming buildings into agile, human centered cyber-physical systems eliminates waste, while allowing them to be a proactive resource on the electric grid with zero emission renewable supplies. And by providing greater value from the same physical plant, the SDB approach can move beyond cost-to-build and cost-to-operate metrics to broader return-on-investment for new extendable future-proof technologies.
1 attachment
PDF version
Printer-friendly version
CPS Domains
Energy Efficient Buildings
Architectures
Control
Energy
Wireless Sensing and Actuation
CPS Technologies
Foundations