Visible to the public CPS: Synergy: Integrated Emergency Cyber Physical Human SystemsConflict Detection Enabled

Project Details
Lead PI:Lui Sha
Co-PI(s):Tarek Abdelzaher
Richard Berlin
Performance Period:10/01/13 - 09/30/16
Institution(s):University of Illinois at Urbana-Champaign
Sponsor(s):National Science Foundation
Project URL:https://publish.illinois.edu/cpsintegrationlab/rtsi-projects/
Award Number:1329886
1031 Reads. Placed 369 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract: This project will develop architecture and supporting enabling technologies to avert imminent loss of life or property in fast changing environments. The selected application is resuscitation in an intensive care unit (ICU) because it is life critical, time critical, human-centric and includes complex devices and software. For example, heart attack can be obscured in a trauma patient hemorrhaging from a broken leg in the presence of a collapsed lung. The challenge lies in solving the overarching difficulties of safe execution while maintaining complex and dynamic workflows. The availability and skill levels of medical staff, patient conditions, and medical device configurations all change rapidly. The core contribution is design and verification of reduced complexity situation awareness architecture for Emergency Cyber Physical Human systems (ECPH), supported by enabling technologies such as workflow adaptation protocols, managing data uncertainty and safe device plug and play. The ECPH workflow adaptation protocols are not only a function of the tasks and environment at hand, but must also be aware of the capabilities and training of the medical staff. In addition, risk mitigation driven safety interlock protocols will keep the actions of medical staff and CPS in synchrony with dynamically selected workflows. This is a cooperative effort of UIUC engineering and the ICU department of Carle Foundation Hospital. An ECPH team operates to accomplish a mission under rapidly changing circumstances. The stressful, rushed, and often unfriendly environment of an ECPH system means that errors, uncertainty, and failures will arise. This research will offer safety and resilience in the face of such disruptions. Effective and immediate intervention enabled by an optimized ECPH system will dramatically reduce preventable errors. The societal impact of effective collaboration under high stress will be enormous in terms of human lives and health care costs. According to CDC in 2010, the estimated direct & indirect costs of heart attacks and strokes alone in the U.S. were $503.2 billion; a significant percent of such patients during emergency care suffer complications and harm which are preventable. This project will develop educational material for training the next generation of researchers and engineers. The technology to be developed will also be adapted to other similar ECPH environments such as fighting a raging building fire.