Skip to Main Content Area
CPS-VO
Contact Support
Browse
Calendar
Announcements
Repositories
Groups
Search
Search for Content
Search for a Group
Search for People
Search for a Project
Tagcloud
› Go to login screen
Not a member?
Click here to register!
Forgot username or password?
Cyber-Physical Systems Virtual Organization
Read-only archive of site from September 29, 2023.
CPS-VO
»
Projects
Control-Theoretic Defense Strategies for Cyber-Physical Systems
View
Submitted by fabiopas on Mon, 12/21/2015 - 3:11pm
Project Details
Lead PI:
Fabio Pasqualetti
Co-PI(s):
Amir-Hamed Mohsenian-Rad
Performance Period:
09/01/14
-
08/31/17
Institution(s):
University of California at Riverside
Sponsor(s):
National Science Foundation
Award Number:
1405330
1043 Reads. Placed 359 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract:
This project will design next-generation defense mechanisms to protect critical infrastructures, such as power grids, large industrial plants, and water distribution systems. These critical infrastructures are complex primarily due to the integration of cyber and physical components, the presence of high-order behaviors and functions, and an intricate and large interconnection pattern. Malicious attackers can exploit the complexity of the infrastructure, and compromise a system's functionality through cyber attacks (that is hacking into the computation and communication systems) and/or physical attacks (tampering with the actuators, sensors and the control system). This work will develop mathematical models of critical infrastructures and attacks, develop intelligent control-theoretic security mechanisms, and validate the findings on an industry-accredited simulation platform. This project will directly impact national security and economic competitiveness, and the results will be available and useful to utility companies. To accompany the scientific advances, the investigators will also engage in educational efforts to bring this research to the classroom at UCR, and will disseminate their results via scientific publications. The work will also create several opportunities for undergraduate and graduate students to engage in research at UCR, one of the nation's most ethnically diverse research-intensive institutions. This study encompasses theoretical, computational, and experimental research at UCR aimed at characterizing vulnerabilities of complex cyber-physical systems, with a focus on electric power networks, and control-theoretic defense mechanisms to ensure protection and graceful performance degradation against accidental faults and malicious attacks. This project proposes a transformative approach to cyber-physical security, which builds on a unified control-theoretic framework to model cyber-physical systems, attacks, and defense strategies. This project will undertake three main research initiatives ranging from fundamental scientific and engineering research to analysis using industry-accepted simulation tools: (1) modeling and analysis of cyber-physical attacks, and their impact on system stability and performance; (2) design of monitors to reveal and distinguish between accidental and malignant contingencies; and (3) synthesis of adaptive defense strategies for stochastic and highly dynamic cyber-physical systems. Results will first be characterized from a pure control-theoretic perspective with focus on stochastic, switching, and dynamic cyber-physical systems, so as to highlight fundamental research challenges, and then specialized for the case of smart grid, so as to clarify the implementation of monitors, attacks, and defense strategies. The findings and strategies will be validated for the case of power networks by using the RTDS simulation system, which is an industry-accredited tool for real-time tests of dynamic behavior, faults, attacks, monitoring systems, and defensive strategies.
Related Artifacts
Publications
Detecting dynamic load altering attacks: A data-driven time-frequency analysis
A Divide-and-Conquer Approach to Distributed Attack Identification
The Role of Diameter in the Controllability of Complex Networks
Dynamic Load Altering Attacks in Smart Grid
Security in stochastic control systems: Fundamental limitations and performance bounds
The Observability Radius of Network Systems
On the Number of Strongly Structurally Controllable Networks
Scheduling of Control Nodes for Improved Network Controllability
Discrete-Time Dynamical Networks with Diagonal Controllability Gramian
On Kalman Filtering with Compromised Sensors: Attack Stealthiness and Performance Bounds
Hierarchical Location Identification of Destabilizing Faults and Attacks in Power Systems: A Frequency-Domain Approach
Time-Varying Actuator Scheduling in Complex Networks
Networks with Diagonal Controllability Gramians: Analysis, Graphical Conditions, and Design Algorithms
Data-injection attacks in stochastic control systems: Detectability and performance tradeoffs
The Observability Radius of Networks
Dynamic Load Altering Attacks Against Power System Stability: Attack Models and Protection Designs
1 attachment
PDF version
Printer-friendly version
CPS Domains
Energy Sector
Water and Wastewater Systems Sector
Smart Grid
Platforms
Control
Energy
Critical Infrastructure
Simulation
CPS Technologies
Foundations