Biblio
Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.
Improvements in mobile networking combined with the ubiquitous availability and adoption of low-cost development boards have enabled the vision of mobile platforms of Cyber-Physical Systems (CPS), such as fractionated spacecraft and UAV swarms. Computation and communication resources, sensors, and actuators that are shared among different applications characterize these systems. The cyber-physical nature of these systems means that physical environments can affect both the resource availability and software applications that depend on resource availability. While many application development and management challenges associated with such systems have been described in existing literature, resilient operation and execution have received less attention. This paper describes our work on improving runtime support for resilience in mobile CPS, with a special focus on our runtime infrastructure that provides autonomous resilience via self-reconfiguration. We also describe the interplay between this runtime infrastructure and our design-time tools, as the later is used to statically determine the resilience properties of the former. Finally, we present a use case study to demonstrate and evaluate our design-time resilience analysis and runtime self-reconfiguration infrastructure.