Visible to the public CPS: TTP Option: Synergy: Traffic Signal Control with Connected and Autonomous Vehicles in the Traffic StreamConflict Detection Enabled

Project Details
Lead PI:Lily-Ageliki Elefteriadou
Co-PI(s):Sanjay Ranka
Carl Crane
Performance Period:09/01/15 - 08/31/20
Institution(s):University of Florida
Sponsor(s):National Science Foundation
Award Number:1446813
1189 Reads. Placed 286 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract: Recent progress in autonomous and connected vehicle technologies coupled with Federal and State initiatives to facilitate their widespread use provide significant opportunities in enhancing mobility and safety for highway transportation. This project develops signalized intersection control strategies and other enabling sensor mechanisms for jointly optimizing vehicle trajectories and signal control by taking advantage of existing advanced technologies (connected vehicles and vehicle to infrastructure communications, sensors, autonomous vehicle technologies, etc.) Traffic signal control is a critical component of the existing transportation infrastructure and it has a significant impact on transportation system efficiency, as well as energy consumption and environmental impacts. In addition to advanced vehicle technologies, the strategies developed consider the presence of conventional vehicles in the traffic stream to facilitate transition to these new strategies in a mixed vehicle environment. The project also develops and uses simulation tools to evaluate these strategies as well as to provide tools that can be used in practice to consider the impacts of automated and connected vehicles in arterial networks. The project involves two industry partners (ISS and Econolite) to help facilitate new product development in anticipation of increased market penetration of connected and autonomous vehicles. The approach will be tested through simulation at University of Florida, through field tests at the Turner Fairbank Highway Research Center (TFHRC) and through the control algorithms that also will be deployed and tested in the field. The project will support multiple graduate students and will support creation of on-line classes. The project is at the intersection of several different disciplines (optimization, sensors, automated vehicles, transportation engineering) required to produce a real-time engineered system that depends on the seamless integration of several components: sensor functionality, connected and autonomous vehicle information communication, signal control optimization strategy, missing and erroneous information, etc. The project develops and implements optimization processes and strategies considering a seamless fusion of multiple data sources, as well as a mixed vehicle stream (autonomous, connected, and conventional vehicles) under real-world conditions of uncertain and missing data. Since trajectories for connected and conventional vehicles cannot be optimized or guaranteed, the project examines the impacts of the presence of automated vehicles on the following vehicles in a queue. The project also integrates advanced sensing technology needed to control a mixed vehicle stream, as well as address malfunctioning communications in connected and autonomous vehicles.