Biblio
This paper addresses the problem of event-triggered control of linear time-invariant systems over time-varying rate limited communication channels, including the possibility of channel blackouts, which are intervals of time when the communication channel is unavailable for feedback. In order to design an effective event-triggered controller that operates successfully even in the presence of blackouts, we analyze the channel data capacity, which is the total maximum number of bits that could be communicated over a given time interval. We provide an efficient real-time algorithm to estimate the channel capacity for a time-slotted model of channel evolution. Equipped with this algorithm we then propose an event-triggering scheme, which using prior knowledge of the channel information, guarantees exponential stabilization at a desired convergence rate despite intermittent channel blackouts. The contributions are the notion of channel blackouts, the effective control despite their occurrence, and the analysis and quantification of the data capacity for a class of time-varying continuous-time channels.