Visible to the public Biblio

Filters: Keyword is Legged locomotion  [Clear All Filters]
2018-05-23
Park, Evelyn J., Kang, Jiyeon, Su, Hao, Stegall, Paul, Miranda, Daniel L., Hsu, Wen-Hao, Karabas, Mustafa, Phipps, Nathan, Agrawal, Sunil K., Goldfield, Eugene C. et al..  2017.  Design and preliminary evaluation of a multi-robotic system with pelvic and hip assistance for pediatric gait rehabilitation. Rehabilitation Robotics (ICORR), 2017 International Conference on. :332–339.

This paper presents a modular, computationally-distributed “multi-robot” cyberphysical system designed to assist children with developmental delays in learning to walk. The system consists of two modules, each assisting a different aspect of gait: a tethered cable pelvic module with up to 6 degrees of freedom (DOF), which can modulate the motion of the pelvis in three dimensions, and a two DOF wearable hip module assisting lower limb motion, specifically hip flexion. Both modules are designed to be lightweight and minimally restrictive to the user, and the modules can operate independently or in cooperation with each other, allowing flexible system configuration to provide highly customized and adaptable assistance. Motion tracking performance of approximately 2 mm root mean square (RMS) error for the pelvic module and less than 0.1 mm RMS error for the hip module was achieved. We demonstrate coordinated operation of the two modules on a mannequin test platform with articulated and instrumented lower limbs.

2018-05-17
J. C. Gallagher, E. T. Matson, G. W. Greenwood.  2013.  On the implications of plug-and-learn adaptive hardware components toward a cyberphysical systems perspective on evolvable and adaptive hardware. 2013 IEEE International Conference on Evolvable Systems (ICES). :59-65.

Evolvable and Adaptive Hardware (EAH) Systems have been a subject of study for about two decades. This paper argues that viewing EAH devices in isolation from the larger systems in which they serve as components is somewhat dangerous in that EAH devices can subvert the design hierarchies upon which designers base verification and validation efforts. The paper proposes augmenting EAH components with additional machinery to enable the application of model-checking and related Cyber-Physical Systems techniques to extract evolving intra-module relationships for formal verification and validation purposes.

2018-05-14