Visible to the public Biblio

Filters: Keyword is microrobots  [Clear All Filters]
2018-05-17
J. C. Gallagher, S. Boddhu, E. Matson, G. Greenwood.  2014.  Improvements to Evolutionary Model Consistency Checking for a Flapping-Wing Micro Air Vehicle. 2014 IEEE International Conference on Evolvable Systems. :203-210.

Evolutionary Computation has been suggested as a means of providing ongoing adaptation of robot controllers. Most often, using Evolutionary Computation to that end focuses on recovery of acceptable robot performance with less attention given to diagnosing the nature of the failure that necessitated the adaptation. In previous work, we introduced the concept of Evolutionary Model Consistency Checking in which candidate robot controller evaluations were dual-purposed for both evolving control solutions and extracting robot fault diagnoses. In that less developed work, we could only detect single wing damage faults in a simulated Flapping Wing Micro Air Vehicle. We now extend the method to enable detection and diagnosis of both single wing and dual wing faults. This paper explains those extensions, demonstrates their efficacy via simulation studies, and provides discussion on the possibility of augmenting EC adaptation by exploiting extracted fault diagnoses to speed EC search.

G. Greenwood, M. Podhradsky, J. Gallagher, E. Matson.  2015.  A Multi-Agent System for Autonomous Adaptive Control of a Flapping-Wing Micro Air Vehicle. 2015 IEEE Symposium Series on Computational Intelligence. :1073-1080.

Biomimetic flapping wing vehicles have attracted recent interest because of their numerous potential military and civilian applications. In this paper we describe the design of a multi-agent adaptive controller for such a vehicle. This controller is responsible for estimating the vehicle pose (position and orientation) and then generating four parameters needed for split-cycle control of wing movements to correct pose errors. These parameters are produced via a subsumption architecture rule base. The control strategy is fault tolerant. Using an online learning process an agent continuously monitors the vehicle's behavior and initiates diagnostics if the behavior has degraded. This agent can then autonomously adapt the rule base if necessary. Each rule base is constructed using a combination of extrinsic and intrinsic evolution. Details on the vehicle, the multi-agent system architecture, agent task scheduling, rule base design, and vehicle control are provided.

J. C. Gallagher, E. T. Matson, J. Goppert.  2017.  A Provisional Approach to Maintaining Verification and Validation Capability in Self-Adapting Robots. 2017 First IEEE International Conference on Robotic Computing (IRC). :382-388.

Cyber Physical Systems (CPS) are composed of multiple physical and computing components that are deeply intertwined, operate on differing spatial and temporal scales, and interact with one another in fluid, context dependent, manners. Cyber Physical Systems often include smart components that use local adaptation to improve whole system performance or to provide damage response. Evolvable and Adaptive Hardware (EAH) components, at least conceptually, are often represented as an enabling technology for such smart components. This paper will outline one approach to applying CPS thinking to better address a growing need to address Verification and Validation (V&V) questions related to the use of EAH smart components. It will argue that, perhaps fortuitously, the very adaptations EAH smart components employ for performance improvement may also be employed to maintain V&V capability.

M. Sam, S. Boddhu, J. Gallagher.  2017.  A dynamic search space approach to improving learning on a simulated Flapping Wing Micro Air Vehicle. 2017 IEEE Congress on Evolutionary Computation (CEC). :629-635.

Those employing Evolutionary Algorithms (EA) are constantly challenged to engineer candidate solution representations that balance expressive power (I.E. can a wide variety of potentially useful solutions be represented?) and meta-heuristic search support (I.E. does the representation support fast acquisition and subsequent fine-tuning of adequate solution candidates). In previous work with a simulated insect-like Flapping-Wing Micro Air Vehicle (FW-MAV), an evolutionary algorithm was employed to blend descriptions of wing flapping patterns to restore correct flight behavior after physical damage to one or both of the wings. Some preliminary work had been done to reduce the overall size of the search space as a means of improving time required to acquire a solution. This of course would likely sacrifice breadth of solutions types and potential expressive power of the representation. In this work, we focus on methods to improve performance by augmenting EA search to dynamically restrict and open access to the whole space to improve solution acquisition time without sacrificing expressive power of the representation. This paper will describe some potential restriction/access control methods and provide preliminary experimental results on the efficacy of these methods in the context of adapting FW-MAV wing gaits.

J. C. Gallagher, D. B. Doman, M. W. Oppenheimer.  2012.  The Technology of the Gaps: An Evolvable Hardware Synthesized Oscillator for the Control of a Flapping-Wing Micro Air Vehicle. IEEE Transactions on Evolutionary Computation. 16:753-768.

To date, work in evolvable and adaptive hardware (EAH) has been largely isolated from primary inclusion into larger design processes. Almost without exception, EAH efforts are aimed at creating systems whole cloth, creating drop-in replacements for existing components of a larger design, or creating after-the-fact fixes for designs found to be deficient. This paper will discuss early efforts in integrating EAH methods into the design of a controller for a flapping-wing micro air vehicle (FWMAV). The FWMAV project is extensive, multidisciplinary, and on going. Because EAH methods were in consideration during its earliest design stages, this project provides a rich environment in which to explore means of effectively combining EAH and traditional design methodologies. In addition to providing a concrete EAH design that addresses potential problems with FWMAV flight in a unique way, this paper will also provide a provisional list of EAH design integration principles, drawn from our experiences to date.