Biblio
Although a fairly new topic in the context of cyber security, situation awareness (SA) has a far longer history of study and applications in such areas as control of complex enterprises and in conventional warfare. Far more is known about the SA in conventional military conflicts, or adversarial engagements, than in cyber ones. By exploring what is known about SA in conventional–-also commonly referred to as kinetic–-battles, we may gain insights and research directions relevant to cyber conflicts. For this reason, having outlined the foundations and challenges on CSA in the previous chapter, we proceed to discuss the nature of SA in conventional (often called kinetic) conflict, review what is known about this kinetic SA (KSA), and then offer a comparison with what is currently understood regarding the cyber SA (CSA). We find that challenges and opportunities of KSA and CSA are similar or at least parallel in several important ways. With respect to similarities, in both kinetic and cyber worlds, SA strongly impacts the outcome of the mission. Also similarly, cognitive biases are found in both KSA and CSA. As an example of differences, KSA often relies on commonly accepted, widely used organizing representation–-map of the physical terrain of the battlefield. No such common representation has emerged in CSA, yet.
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.