Biblio
As designers conceive and implement what are commonly (but mistakenly) called autonomous systems, they adhere to certain myths of autonomy that are not only damaging in their own right, but also by their continued propagation. This article busts such myths and gives reasons why each of these myths should be called out and cast aside.
We propose 10 challenges for making automation components into effective "team players" when they interact with people in significant ways. Our analysis is based on some of the principles of human-centered computing that we have developed individually and jointly over the years, and is adapted from a more comprehensive examination of common ground and coordination.
Coactive Design is a new approach to address the increasingly sophisticated roles that people and robots play as the use of robots expands into new, complex domains. The approach is motivated by the desire for robots to perform less like teleoperated tools or independent automatons and more like interdependent teammates. In this article, we describe what it means to be interdependent, why this is important, and the design implications that follow from this perspective. We argue for a human-robot system model that supports interdependence through careful attention to requirements for observability, predictability, and directability. We present a Coactive Design method and show how it can be a useful approach for developers trying to understand how to translate high-level teamwork concepts into reusable control algorithms, interface elements, and behaviors that enable robots to fulfill their envisioned role as teammates. As an example of the coactive design approach, we present our results from the DARPA Virtual Robotics Challenge, a competition designed to spur development of advanced robots that can assist humans in recovering from natural and man-made disasters. Twenty-six teams from eight countries competed in three different tasks providing an excellent evaluation of the relative effectiveness of different approaches to human-machine system design.