Visible to the public Biblio

Filters: Keyword is Human Machine Teaming  [Clear All Filters]
2019-09-24
Gomez, Steven R., Mancuso, Vincent, Staheli, Diane.  2019.  Considerations for Human-Machine Teaming in Cybersecurity. Augmented Cognition. :153–168.

Understanding cybersecurity in an environment is uniquely challenging due to highly dynamic and potentially-adversarial activity. At the same time, the stakes are high for performance during these tasks: failures to reason about the environment and make decisions can let attacks go unnoticed or worsen the effects of attacks. Opportunities exist to address these challenges by more tightly integrating computer agents with human operators. In this paper, we consider implications for this integration during three stages that contribute to cyber analysts developing insights and conclusions about their environment: data organization and interaction, toolsmithing and analytic interaction, and human-centered assessment that leads to insights and conclusions. In each area, we discuss current challenges and opportunities for improved human-machine teaming. Finally, we present a roadmap of research goals for advanced human-machine teaming in cybersecurity operations.

2019-09-13
Neil C. Rabinowitz, Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Ali Eslami, Matthew Botvinick.  2018.  Machine Theory of Mind. CoRR. abs/1802.07740

Theory of mind (ToM; Premack & Woodruff, 1978) broadly refers to humans' ability to represent the mental states of others, including their desires, beliefs, and intentions. We propose to train a machine to build such models too. We design a Theory of Mind neural network -- a ToMnet -- which uses meta-learning to build models of the agents it encounters, from observations of their behaviour alone. Through this process, it acquires a strong prior model for agents' behaviour, as well as the ability to bootstrap to richer predictions about agents' characteristics and mental states using only a small number of behavioural observations. We apply the ToMnet to agents behaving in simple gridworld environments, showing that it learns to model random, algorithmic, and deep reinforcement learning agents from varied populations, and that it passes classic ToM tasks such as the "Sally-Anne" test (Wimmer & Perner, 1983; Baron-Cohen et al., 1985) of recognising that others can hold false beliefs about the world. We argue that this system -- which autonomously learns how to model other agents in its world -- is an important step forward for developing multi-agent AI systems, for building intermediating technology for machine-human interaction, and for advancing the progress on interpretable AI.

Madni, Azad, Madni, Carla.  2018.  Architectural Framework for Exploring Adaptive Human-Machine Teaming Options in Simulated Dynamic Environments. Systems. 6:44.

With the growing complexity of environments in which systems are expected to operate, adaptive human-machine teaming (HMT) has emerged as a key area of research. While human teams have been extensively studied in the psychological and training literature, and agent teams have been investigated in the artificial intelligence research community, the commitment to research in HMT is relatively new and fueled by several technological advances such as electrophysiological sensors, cognitive modeling, machine learning, and adaptive/adaptable human-machine systems. This paper presents an architectural framework for investigating HMT options in various simulated operational contexts including responding to systemic failures and external disruptions. The paper specifically discusses new and novel roles for machines made possible by new technology and offers key insights into adaptive human-machine teams. Landed aircraft perimeter security is used as an illustrative example of an adaptive cyber-physical-human system (CPHS). This example is used to illuminate the use of the HMT framework in identifying the different human and machine roles involved in this scenario. The framework is domain-independent and can be applied to both defense and civilian adaptive HMT. The paper concludes with recommendations for advancing the state-of-the-art in HMT. 

Don Norman.  2017.  Design, Business Models, and Human-Technology Teamwork. Research-Technology Management. 60:26-30.
P. Damacharla, A. Y. Javaid, J. J. Gallimore, V. K. Devabhaktuni.  2018.  Common Metrics to Benchmark Human-Machine Teams (HMT): A Review. IEEE Access. 6:38637-38655.

A significant amount of work is invested in human-machine teaming (HMT) across multiple fields. Accurately and effectively measuring system performance of an HMT is crucial for moving the design of these systems forward. Metrics are the enabling tools to devise a benchmark in any system and serve as an evaluation platform for assessing the performance, along with the verification and validation, of a system. Currently, there is no agreed-upon set of benchmark metrics for developing HMT systems. Therefore, identification and classification of common metrics are imperative to create a benchmark in the HMT field. The key focus of this review is to conduct a detailed survey aimed at identification of metrics employed in different segments of HMT and to determine the common metrics that can be used in the future to benchmark HMTs. We have organized this review as follows: identification of metrics used in HMTs until now, and classification based on functionality and measuring techniques. Additionally, we have also attempted to analyze all the identified metrics in detail while classifying them as theoretical, applied, real-time, non-real-time, measurable, and observable metrics. We conclude this review with a detailed analysis of the identified common metrics along with their usage to benchmark HMTs.

Madni, Azad, Madni, Carla.  2018.  Architectural Framework for Exploring Adaptive Human-Machine Teaming Options in Simulated Dynamic Environments. Systems. 6:44.

With the growing complexity of environments in which systems are expected to operate, adaptive human-machine teaming (HMT) has emerged as a key area of research. While human teams have been extensively studied in the psychological and training literature, and agent teams have been investigated in the artificial intelligence research community, the commitment to research in HMT is relatively new and fueled by several technological advances such as electrophysiological sensors, cognitive modeling, machine learning, and adaptive/adaptable human-machine systems. This paper presents an architectural framework for investigating HMT options in various simulated operational contexts including responding to systemic failures and external disruptions. The paper specifically discusses new and novel roles for machines made possible by new technology and offers key insights into adaptive human-machine teams. Landed aircraft perimeter security is used as an illustrative example of an adaptive cyber-physical-human system (CPHS). This example is used to illuminate the use of the HMT framework in identifying the different human and machine roles involved in this scenario. The framework is domain-independent and can be applied to both defense and civilian adaptive HMT. The paper concludes with recommendations for advancing the state-of-the-art in HMT.

N. Soule, B. Simidchieva, F. Yaman, R. Watro, J. Loyall, M. Atighetchi, M. Carvalho, D. Last, D. Myers, B. Flatley.  2015.  Quantifying & minimizing attack surfaces containing moving target defenses. 2015 Resilience Week (RWS). :1-6.

The cyber security exposure of resilient systems is frequently described as an attack surface. A larger surface area indicates increased exposure to threats and a higher risk of compromise. Ad-hoc addition of dynamic proactive defenses to distributed systems may inadvertently increase the attack surface. This can lead to cyber friendly fire, a condition in which adding superfluous or incorrectly configured cyber defenses unintentionally reduces security and harms mission effectiveness. Examples of cyber friendly fire include defenses which themselves expose vulnerabilities (e.g., through an unsecured admin tool), unknown interaction effects between existing and new defenses causing brittleness or unavailability, and new defenses which may provide security benefits, but cause a significant performance impact leading to mission failure through timeliness violations. This paper describes a prototype service capability for creating semantic models of attack surfaces and using those models to (1) automatically quantify and compare cost and security metrics across multiple surfaces, covering both system and defense aspects, and (2) automatically identify opportunities for minimizing attack surfaces, e.g., by removing interactions that are not required for successful mission execution.

2019-09-12
Patricia L. McDermott, Cynthia O. Dominguez, Nicholas Kasdaglis, Matthew H. Ryan, Isabel M. Trahan, Alexander Nelson.  2018.  Human-Machine Teaming Systems Engineering Guide.

With the explosion of Automation, Autonomy, and AI technology development today, amid encouragement to put humans at the center of AI, systems engineers and user story/requirements developers need research-based guidance on how to design for human machine teaming (HMT). Insights from more than two decades of human-automation interaction research, applied in the systems engineering process, provide building blocks for designing automation, autonomy, and AI-based systems that are effective teammates for people.

The HMT Systems Engineering Guide provides this guidance based on a 2016-17 literature search and analysis of applied research. The guide provides a framework organizing HMT research, along with methodology for engaging with users of a system to elicit user stories and/or requirements that reflect applied research findings. The framework uses organizing themes of Observability, Predictability, Directing Attention, Exploring the Solution Space, Directability, Adaptability, Common Ground, Calibrated Trust, Design Process, and Information Presentation.

The guide includes practice-oriented resources that can be used to bridge the gap between research and design, including a tailorable HMT Knowledge Audit interview methodology, step-by-step instructions for planning and conducting data collection sessions, and a set of general cognitive interface requirements that can be adapted to specific applications based upon domain-specific data collected. 

Bradshaw, Jeffrey M, Hoffman, Robert R, Woods, David D, Johnson, Matthew.  2013.  The seven deadly myths of" autonomous systems". IEEE Intelligent Systems. 28:54–61.

As designers conceive and implement what are commonly (but mistakenly) called autonomous systems, they adhere to certain myths of autonomy that are not only damaging in their own right, but also by their continued propagation. This article busts such myths and gives reasons why each of these myths should be called out and cast aside.

2019-09-09
Gutzwiller, Robert S, Fugate, Sunny, Sawyer, Benjamin D, Hancock, PA.  2015.  The human factors of cyber network defense. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 59:322–326.

Technology’s role in the fight against malicious cyber-attacks is critical to the increasingly networked world of today. Yet, technology does not exist in isolation: the human factor is an aspect of cyber-defense operations with increasingly recognized importance. Thus, the human factors community has a unique responsibility to help create and validate cyber defense systems according to basic principles and design philosophy. Concurrently, the collective science must advance. These goals are not mutually exclusive pursuits: therefore, toward both these ends, this research provides cyber-cognitive links between cyber defense challenges and major human factors and ergonomics (HFE) research areas that offer solutions and instructive paths forward. In each area, there exist cyber research opportunities and realms of core HFE science for exploration. We raise the cyber defense domain up to the HFE community at-large as a sprawling area for scientific discovery and contribution.

A. Endert.  2014.  Semantic Interaction for Visual Analytics: Toward Coupling Cognition and Computation. IEEE Computer Graphics and Applications. 34:8-15.

Alex Endert's dissertation "Semantic Interaction for Visual Analytics: Inferring Analytical Reasoning for Model Steering" described semantic interaction, a user interaction methodology for visual analytics (VA). It showed that user interaction embodies users' analytic process and can thus be mapped to model-steering functionality for "human-in-the-loop" system design. The dissertation contributed a framework (or pipeline) that describes such a process, a prototype VA system to test semantic interaction, and a user evaluation to demonstrate semantic interaction's impact on the analytic process. This research is influencing current VA research and has implications for future VA research.

E. Peterson.  2016.  Dagger: Modeling and visualization for mission impact situation awareness. MILCOM 2016 - 2016 IEEE Military Communications Conference. :25-30.

Dagger is a modeling and visualization framework that addresses the challenge of representing knowledge and information for decision-makers, enabling them to better comprehend the operational context of network security data. It allows users to answer critical questions such as “Given that I care about mission X, is there any reason I should be worried about what is going on in cyberspace?” or “If this system fails, will I still be able to accomplish my mission?”.

G. Klien, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, P. J. Feltovich.  2004.  Ten challenges for making automation a "team player" in joint human-agent activity. IEEE Intelligent Systems. 19:91-95.

We propose 10 challenges for making automation components into effective "team players" when they interact with people in significant ways. Our analysis is based on some of the principles of human-centered computing that we have developed individually and jointly over the years, and is adapted from a more comprehensive examination of common ground and coordination.

Johnson, Matthew, Bradshaw, Jeffrey M., Feltovich, Paul J., Jonker, Catholijn M., van Riemsdijk, M. Birna, Sierhuis, Maarten.  2014.  Coactive Design: Designing Support for Interdependence in Joint Activity. J. Hum.-Robot Interact.. 3:43–69.

Coactive Design is a new approach to address the increasingly sophisticated roles that people and robots play as the use of robots expands into new, complex domains. The approach is motivated by the desire for robots to perform less like teleoperated tools or independent automatons and more like interdependent teammates. In this article, we describe what it means to be interdependent, why this is important, and the design implications that follow from this perspective. We argue for a human-robot system model that supports interdependence through careful attention to requirements for observability, predictability, and directability. We present a Coactive Design method and show how it can be a useful approach for developers trying to understand how to translate high-level teamwork concepts into reusable control algorithms, interface elements, and behaviors that enable robots to fulfill their envisioned role as teammates. As an example of the coactive design approach, we present our results from the DARPA Virtual Robotics Challenge, a competition designed to spur development of advanced robots that can assist humans in recovering from natural and man-made disasters. Twenty-six teams from eight countries competed in three different tasks providing an excellent evaluation of the relative effectiveness of different approaches to human-machine system design.

2019-09-05
Jessica Barber.  2016.  How to Hack a Human.

Dr. Jessica Barker gave a presentation in which she discussed the elements of human nature and social norms that lead humans to falling victim to social engineering attacks. The importance of strengthening cybersecurity culture in the workplace to encourage good cybersecurity behaviors is also emphasized.