Biblio
Theory of mind (ToM; Premack & Woodruff, 1978) broadly refers to humans' ability to represent the mental states of others, including their desires, beliefs, and intentions. We propose to train a machine to build such models too. We design a Theory of Mind neural network -- a ToMnet -- which uses meta-learning to build models of the agents it encounters, from observations of their behaviour alone. Through this process, it acquires a strong prior model for agents' behaviour, as well as the ability to bootstrap to richer predictions about agents' characteristics and mental states using only a small number of behavioural observations. We apply the ToMnet to agents behaving in simple gridworld environments, showing that it learns to model random, algorithmic, and deep reinforcement learning agents from varied populations, and that it passes classic ToM tasks such as the "Sally-Anne" test (Wimmer & Perner, 1983; Baron-Cohen et al., 1985) of recognising that others can hold false beliefs about the world. We argue that this system -- which autonomously learns how to model other agents in its world -- is an important step forward for developing multi-agent AI systems, for building intermediating technology for machine-human interaction, and for advancing the progress on interpretable AI.
With the explosion of Automation, Autonomy, and AI technology development today, amid encouragement to put humans at the center of AI, systems engineers and user story/requirements developers need research-based guidance on how to design for human machine teaming (HMT). Insights from more than two decades of human-automation interaction research, applied in the systems engineering process, provide building blocks for designing automation, autonomy, and AI-based systems that are effective teammates for people.
The HMT Systems Engineering Guide provides this guidance based on a 2016-17 literature search and analysis of applied research. The guide provides a framework organizing HMT research, along with methodology for engaging with users of a system to elicit user stories and/or requirements that reflect applied research findings. The framework uses organizing themes of Observability, Predictability, Directing Attention, Exploring the Solution Space, Directability, Adaptability, Common Ground, Calibrated Trust, Design Process, and Information Presentation.
The guide includes practice-oriented resources that can be used to bridge the gap between research and design, including a tailorable HMT Knowledge Audit interview methodology, step-by-step instructions for planning and conducting data collection sessions, and a set of general cognitive interface requirements that can be adapted to specific applications based upon domain-specific data collected.
As designers conceive and implement what are commonly (but mistakenly) called autonomous systems, they adhere to certain myths of autonomy that are not only damaging in their own right, but also by their continued propagation. This article busts such myths and gives reasons why each of these myths should be called out and cast aside.