Biblio
Mobile applications frequently access sensitive personal information to meet user or business requirements. Because such information is sensitive in general, regulators increasingly require mobile-app developers to publish privacy policies that describe what information is collected. Furthermore, regulators have fined companies when these policies are inconsistent with the actual data practices of mobile apps. To help mobile-app developers check their privacy policies against their apps' code for consistency, we propose a semi-automated framework that consists of a policy terminology-API method map that links policy phrases to API methods that produce sensitive information, and information flow analysis to detect misalignments. We present an implementation of our framework based on a privacy-policy-phrase ontology and a collection of mappings from API methods to policy phrases. Our empirical evaluation on 477 top Android apps discovered 341 potential privacy policy violations.
How to debug large networks is always a challenging task. Software Defined Network (SDN) offers a centralized con- trol platform where operators can statically verify network policies, instead of checking configuration files device-by-device. While such a static verification is useful, it is still not enough: due to data plane faults, packets may not be forwarded according to control plane policies, resulting in network faults at runtime. To address this issue, we present VeriDP, a tool that can continuously monitor what we call control-data plane consistency, defined as the consistency between control plane policies and data plane forwarding behaviors. We prototype VeriDP with small modifications of both hardware and software SDN switches, and show that it can achieve a verification speed of 3 μs per packet, with a false negative rate as low as 0.1%, for the Stanford backbone and Internet2 topologies. In addition, when verification fails, VeriDP can localize faulty switches with a probability as high as 96% for fat tree topologies.
Smart grid, managed by intelligent devices, have demonstrated great potentials to help residential customers to optimally schedule and manage the appliances' energy consumption. Due to the fine-grained power consumption information collected by smart meter, the customers' privacy becomes a serious concern. Combined with the effects of fake guideline electricity price, this paper focuses an on-line appliance scheduling design to protect customers' privacy in a cost-effective way, while taking into account the influences of non-schedulable appliances' operation uncertainties. We formulate the problem by minimizing the expected sum of electricity cost and achieving acceptable privacy protection. Without knowledge of future electricity consumptions, an on-line scheduling algorithm is proposed based on the only current observations by using a stochastic dynamic programming technique. The simulation results demonstrate the effectiveness of the proposed algorithm using real-world data.
Non-Technical Loss (NTL) fraud is a very common fraud in power systems. In traditional power grid, energy theft, via meter tampering, is the main form of NTL fraud. With the rise of Smart Grid, adversaries can take advantage of two-way communication to commit NTL frauds by meter manipulation or network intrusion. Previous schemes were proposed to detect NTL frauds but are not efficient. In this paper, we propose a Fast NTL Fraud Detection and verification scheme (FNFD). FNFD is based on Recursive Least Square (RLS) to model adversary behavior. Experimental results show that FNFD outperforms existing schemes in terms of efficiency and overhead.
Voice-controlled intelligent personal assistants, such as Cortana, Google Now, Siri and Alexa, are increasingly becoming a part of users' daily lives, especially on mobile devices. They introduce a significant change in information access, not only by introducing voice control and touch gestures but also by enabling dialogues where the context is preserved. This raises the need for evaluation of their effectiveness in assisting users with their tasks. However, in order to understand which type of user interactions reflect different degrees of user satisfaction we need explicit judgements. In this paper, we describe a user study that was designed to measure user satisfaction over a range of typical scenarios of use: controlling a device, web search, and structured search dialogue. Using this data, we study how user satisfaction varied with different usage scenarios and what signals can be used for modeling satisfaction in the different scenarios. We find that the notion of satisfaction varies across different scenarios, and show that, in some scenarios (e.g. making a phone call), task completion is very important while for others (e.g. planning a night out), the amount of effort spent is key. We also study how the nature and complexity of the task at hand affects user satisfaction, and find that preserving the conversation context is essential and that overall task-level satisfaction cannot be reduced to query-level satisfaction alone. Finally, we shed light on the relative effectiveness and usefulness of voice-controlled intelligent agents, explaining their increasing popularity and uptake relative to the traditional query-response interaction.
We present a demonstration of the ARIA framework, a modular approach for rapid development of virtual humans for information retrieval that have linguistic, emotional, and social skills and a strong personality. We demonstrate the framework's capabilities in a scenario where `Alice in Wonderland', a popular English literature book, is embodied by a virtual human representing Alice. The user can engage in an information exchange dialogue, where Alice acts as the expert on the book, and the user as an interested novice. Besides speech recognition, sophisticated audio-visual behaviour analysis is used to inform the core agent dialogue module about the user's state and intentions, so that it can go beyond simple chat-bot dialogue. The behaviour generation module features a unique new capability of being able to deal gracefully with interruptions of the agent.
With the advancement of Internet in Things (IoT) more and more "things" are connected to each other through the Internet. Due to the fact that the collected information may contain personal information of the users, it is very important to ensure the security of the devices in IoT. Diversification is a promising technique that protects the software and devices from harmful attacks and malware by making interfaces unique in each separate system. In this paper we apply diversification on the interfaces of IoT operating systems. To this aim, we introduce the diversification in post-compilation and linking phase of the software life-cycle, by shuffling the order of the linked objects while preserving the semantics of the code. This approach successfully prevents malicious exploits from producing adverse effects in the system. Besides shuffling, we also apply library symbol diversification method, and construct needed support for it e.g. into the dynamic loading phase. Besides studying and discussing memory layout shuffling and symbol diversification as a security measures for IoT operating systems, we provide practical implementations for these schemes for Thingsee OS and Raspbian operating systems and test these solutions to show the feasibility of diversification in IoT environments.
We present PrivInfer, an expressive framework for writing and verifying differentially private Bayesian machine learning algorithms. Programs in PrivInfer are written in a rich functional probabilistic programming language with constructs for performing Bayesian inference. Then, differential privacy of programs is established using a relational refinement type system, in which refinements on probability types are indexed by a metric on distributions. Our framework leverages recent developments in Bayesian inference, probabilistic programming languages, and in relational refinement types. We demonstrate the expressiveness of PrivInfer by verifying privacy for several examples of private Bayesian inference.
The Software Assurance Metrics and Tool Evaluation (SAMATE) project at the National Institute of Standards and Technology (NIST) has created the Software Assurance Reference Dataset (SARD) to provide researchers and software security assurance tool developers with a set of known security flaws. As part of an empirical evaluation of a runtime monitoring framework, two test suites were executed and monitored, revealing deficiencies which led to a collaboration with the NIST SAMATE team to provide replacements. Test Suites 45 and 46 are analyzed, discussed, and updated to improve accuracy, consistency, preciseness, and automation. Empirical results show metrics such as recall, precision, and F-Measure are all impacted by invalid base assumptions regarding the test suites.
In light of the prevalent trend towards dense HetNets, the conventional coupled user association, where mobile device uses the same base station (BS) for both uplink and downlink traffic, is being questioned and the alternative and more general downlink/uplink decoupling paradigm is emerging. We focus on designing an effective user association mechanism for HetNets with downlink/uplink decoupling, which has started to receive more attention. We use a combination of matching theory and stochastic geometry. We model the problem as a matching with contracts game by drawing an analogy with the hospital-doctor matching problem. In our model, we use stochastic geometry to derive a closed-form expression for matching utility function. Our model captures different objectives between users in the uplink/downlink directions and also from the perspective of BSs. Based on this game model, we present a matching algorithm for decoupled uplink/downlink user association that results in a stable allocation. Simulation results demonstrate that our approach provides close-to-optimal performance, and significant gains over alternative approaches for user association in the decoupled context as well as the traditional coupled user association; these gains are a result of the holistic nature of our approach that accounts for the additional cost associated with decoupling and inter-dependence between uplink and downlink associations. Our work is also the first in the wireless communications domain to employ matching with contracts approach.
Despite a long history and numerous proposed defenses, memory corruption attacks are still viable. A secure and low-overhead defense against return-oriented programming (ROP) continues to elude the security community. Currently proposed solutions still must choose between either not fully protecting critical data and relying instead on information hiding, or using incomplete, coarse-grain checking that can be circumvented by a suitably skilled attacker. In this paper, we present a light-weighted memory protection approach (LMP) that uses Intel's MPX hardware extensions to provide complete, fast ROP protection without having to rely in information hiding. We demonstrate a prototype that defeats ROP attacks while incurring an average runtime overhead of 3.9%.
Differential privacy enables organizations to collect accurate aggregates over sensitive data with strong, rigorous guarantees on individuals' privacy. Previous work has found that under differential privacy, computing multiple correlated aggregates as a batch, using an appropriate strategy, may yield higher accuracy than computing each of them independently. However, finding the best strategy that maximizes result accuracy is non-trivial, as it involves solving a complex constrained optimization program that appears to be non-convex. Hence, in the past much effort has been devoted in solving this non-convex optimization program. Existing approaches include various sophisticated heuristics and expensive numerical solutions. None of them, however, guarantees to find the optimal solution of this optimization problem. This paper points out that under (ε, ཬ)-differential privacy, the optimal solution of the above constrained optimization problem in search of a suitable strategy can be found, rather surprisingly, by solving a simple and elegant convex optimization program. Then, we propose an efficient algorithm based on Newton's method, which we prove to always converge to the optimal solution with linear global convergence rate and quadratic local convergence rate. Empirical evaluations demonstrate the accuracy and efficiency of the proposed solution.
Secure Data Sharing (SDS) enables users to share data in the cloud in a confidential and integrity-preserving manner. Many recent SDS approaches are based on Attribute-Based Encryption (ABE), leveraging the advantage that ABE allows to address a multitude of users with only one ciphertext. However, ABE approaches often come with the downside that they require a central fully-trusted entity that is able to decrypt any ciphertext in the system. In this paper, we investigate on whether ABE could be used to efficiently implement Decentralized Secure Data Sharing (D-SDS), which explicitly demands that the authorization and access control enforcement is carried out solely by the owner of the data, without the help of a fully-trusted third party. For this purpose, we did a comprehensive analysis of recent ABE approaches with regard to D-SDS requirements. We found one ABE approach to be suitable, and we show different alternatives to employ this ABE approach in a group-based D-SDS scenario. For a realistic estimation of the resource consumption, we give concrete resource consumption values for workloads taken from real-world system traces and exemplary up-to-date mobile devices. Our results indicate that for the most D-SDS operations, the resulting computation times and outgoing network traffic will be acceptable in many use cases. However, the computation times and outgoing traffic for the management of large groups might prevent using mobile devices.
Anonymous communication systems are vulnerable to long term passive "intersection attacks". Not all users of an anonymous communication system will be online at the same time, this leaks some information about who is talking to who. A global passive adversary observing all communications can learn the set of potential recipients of a message with more and more confidence over time. Nearly all deployed anonymous communication tools offer no protection against such attacks. In this work, we introduce TASP, a protocol used by an anonymous communication system that mitigates intersection attacks by intelligently grouping clients together into anonymity sets. We find that with a bandwidth overhead of just 8% we can dramatically extend the time necessary to perform a successful intersection attack.
We study coding schemes for multiparty interactive communication over synchronous networks that suffer from stochastic noise, where each bit is independently flipped with probability ε. We analyze the minimal overhead that must be added by the coding scheme in order to succeed in performing the computation despite the noise. Our main result is a lower bound on the communication of any noise-resilient protocol over a synchronous star network with n-parties (where all parties communicate in every round). Specifically, we show a task that can be solved by communicating T bits over the noise-free network, but for which any protocol with success probability of 1-o(1) must communicate at least Ω(T log n / log log n) bits when the channels are noisy. By a 1994 result of Rajagopalan and Schulman, the slowdown we prove is the highest one can obtain on any topology, up to a log log n factor. We complete our lower bound with a matching coding scheme that achieves the same overhead; thus, the capacity of (synchronous) star networks is Θ(log log n / log n). Our bounds prove that, despite several previous coding schemes with rate Ω(1) for certain topologies, no coding scheme with constant rate Ω(1) exists for arbitrary n-party noisy networks.
Defending computer networks from ongoing security incidents is a key requirement to ensure service continuity. Handling incidents in real-time is a complex process consisting of the three single steps: intrusion detection, alert processing and intrusion response. For useful and automated incident handling a comprehensive view on the process and tightly interleaved single steps are required. Existing solutions for incident handling merely focus on a single step leaving the other steps completely aside. Incompatible and encapsulated partial solutions are the consequence. This paper proposes an incident handling systems (IHS) based on a novel execution model that allows interleaving and collaborative interaction between the incident handling steps realized using the Blackboard Pattern. Our holistic information model lays the foundation for a conflict-free collaboration. The incident handling steps are further segmented into exchangeable functional blocks distributed across the network. To show the applicability of our approach, typical use cases for incident handling systems are identified and tested with our implementation.
The IoT will host a large number of co-existing cyber-physical applications. Continuous change, application interference, environment dynamics and uncertainty lead to complex effects which must be controlled to give performance and application guarantees. Application and platform self-configuration and self-awareness are one paradigm to approach this challenge. They can leverage context knowledge to control platform and application functions and their interaction. They could play a dominant role in large scale cyber-physical systems and systems-of-systems, simply because no person can oversee the whole system functionality and dynamics. IoT adds a new dimension because Internet based services will increasingly be used in such system functions. Autonomous vehicles accessing cloud services for efficiency and comfort as well as to reach the required level of safety and security are an example. Such vehicle platforms will communicate with a service infrastructure that must be reliable and highly responsive. Automated continuous self-configuration of data storage might be a good basis for such services up to the point where the different self-x strategies might affect each other, in a positive or negative form. This paper contains three contributions from different domains representing the current status of self-aware systems as they will meet in the Internet-of-Things and closes with a short discussion of upcoming challenges.
Secure hardware design is a challenging task that goes far beyond ensuring functional correctness. Important design properties such as non-interference cannot be verified on functional circuit models due to the lack of essential information (e.g., sensitivity level) for reasoning about security. Hardware information flow tracking (IFT) techniques associate data objects in the hardware design with sensitivity labels for modeling security-related behaviors. They allow the designer to test and verify security properties related to confidentiality, integrity, and logical side channels. However, precisely accounting for each bit of information flow at the hardware level can be expensive. In this work, we focus on the precision of the IFT logic. The key idea is to selectively introduce only one sided errors (false positives); these provide a conservative and safe information flow response while reducing the complexity of the security logic. We investigate the effect of logic synthesis on the quality and complexity of hardware IFT and reveal how different logic synthesis optimizations affect the amount of false positives and design overheads of IFT logic. We propose novel techniques to further simplify the IFT logic while adding no, or only a minimum number of, false positives. Additionally, we provide a solution to quantitatively introduce false positives in order to accelerate information flow security verification. Experimental results using IWLS benchmarks show that our method can reduce complexity of GLIFT by 14.47% while adding 0.20% of false positives on average. By quantitatively introducing false positives, we can achieve up to a 55.72% speedup in verification time.
Several technologies, such as WiFi, Ethernet and power-line communications (PLC), can be used to build residential and enterprise networks. These technologies often co-exist; most networks use WiFi, and buildings are readily equipped with electrical wires that can offer a capacity up to 1 Gbps with PLC. Yet, current networks do not exploit this rich diversity and often operate far below the available capacity. We design, implement, and evaluate EMPoWER, a system that exploits simultaneously several potentially-interfering mediums. It operates at layer 2.5, between the MAC and IP layers, and combines routing (to find multiple concurrent routes) and congestion control (to efficiently balance traffic across the routes). To optimize resource utilization and robustness, both components exploit the heterogeneous nature of the network. They are fair and efficient, and they operate only within the local area network, without affecting remote Internet hosts. We demonstrate the performance gains of EMPoWER, by simulations and experiments on a 22-node testbed. We show that PLC/WiFi, benefiting from the diversity offered by wireless and electrical mediums, provides significant throughput gains (up to 10x) and improves coverage, compared to multi-channel WiFi.
Cryptocurrencies record transactions in a decentralized data structure called a blockchain. Two of the most popular cryptocurrencies, Bitcoin and Ethereum, support the feature to encode rules or scripts for processing transactions. This feature has evolved to give practical shape to the ideas of smart contracts, or full-fledged programs that are run on blockchains. Recently, Ethereum's smart contract system has seen steady adoption, supporting tens of thousands of contracts, holding millions dollars worth of virtual coins. In this paper, we investigate the security of running smart contracts based on Ethereum in an open distributed network like those of cryptocurrencies. We introduce several new security problems in which an adversary can manipulate smart contract execution to gain profit. These bugs suggest subtle gaps in the understanding of the distributed semantics of the underlying platform. As a refinement, we propose ways to enhance the operational semantics of Ethereum to make contracts less vulnerable. For developers writing contracts for the existing Ethereum system, we build a symbolic execution tool called Oyente to find potential security bugs. Among 19, 336 existing Ethereum contracts, Oyente flags 8, 833 of them as vulnerable, including the TheDAO bug which led to a 60 million US dollar loss in June 2016. We also discuss the severity of other attacks for several case studies which have source code available and confirm the attacks (which target only our accounts) in the main Ethereum network.
Bitcoin provides two incentives for miners: block rewards and transaction fees. The former accounts for the vast majority of miner revenues at the beginning of the system, but it is expected to transition to the latter as the block rewards dwindle. There has been an implicit belief that whether miners are paid by block rewards or transaction fees does not affect the security of the block chain. We show that this is not the case. Our key insight is that with only transaction fees, the variance of the block reward is very high due to the exponentially distributed block arrival time, and it becomes attractive to fork a "wealthy" block to "steal" the rewards therein. We show that this results in an equilibrium with undesirable properties for Bitcoin's security and performance, and even non-equilibria in some circumstances. We also revisit selfish mining and show that it can be made profitable for a miner with an arbitrarily low hash power share, and who is arbitrarily poorly connected within the network. Our results are derived from theoretical analysis and confirmed by a new Bitcoin mining simulator that may be of independent interest.We discuss the troubling implications of our results for Bitcoin's future security and draw lessons for the design of new cryptocurrencies.