Visible to the public Biblio

Found 1717 results

Filters: First Letter Of Last Name is J  [Clear All Filters]
2016-10-06
Jing Chen, Aiping Xiong, Ninghui Li, Robert Proctor.  2016.  The description-experience gap in the effect of warning reliability on user trust, reliance, and performance in a phishing context.

Automation reliability is an important factor that may affect human trust in automation, which has been shown to strongly influence the way the human operator interacts with the automated system. If the trust level is too low, the human operator may not utilize the automated system as expected; if the trust level is too high, the over-trust may lead to automation biases. In these cases, the overall system performance will be undermined --- after all, the ultimate goal of human-automation collaboration is to improve performance beyond what would be achieved with either alone. Most of the past research has manipulated the automation reliability through “experience”. That is, participants perform a certain task with an automated system that has a certain level of reliability (e.g., an automated warning system providing valid warnings 75% of the times). During or after the task, participants’ trust and reliance on the automated system is measured, as well as the performance. However, research has shown that participants’ perceived reliability usually differs from the actual reliability. In a real-world situation, it is very likely that the exact reliability can be described to the human operator (i.e., through “description”). A description-experience gap has been found robustly in human decision-making studies, according to which there are systematic differences between decisions made from description and decisions from experience. The current study examines the possible description-experience gap in the effect of automation reliability on human trust, reliance, and performance in the context of phishing. Specifically, the research investigates how the reliability of phishing warnings influences people's decisions about whether to proceed upon receiving the warning. The effect of the reliability of an automated phishing warning system is manipulated through experience with the system or through description of it. These two types of manipulations are directly compared, and the measures of interest are human trust in the warning (a subjective rating of how trustable the warning system is), human reliance on the automated system (an objective measure of whether the participants comply with the system’s warnings), and performance (the overall quality of the decisions made).

2016-10-03
Nuthan Munaiah, Andrew Meneely, Benjamin Short, Ryan Wilson, Jordan Tice.  2016.  Are Intrusion Detection Studies Evaluated Consistently? A Systematic Literature Review :18.

Cyberinfrastructure is increasingly becoming target of a wide spectrum of attacks from Denial of
Service to large-scale defacement of the digital presence of an organization. Intrusion Detection System
(IDSs) provide administrators a defensive edge over intruders lodging such malicious attacks. However,
with the sheer number of different IDSs available, one has to objectively assess the capabilities of different
IDSs to select an IDS that meets specific organizational requirements. A prerequisite to enable such
an objective assessment is the implicit comparability of IDS literature. In this study, we review IDS
literature to understand the implicit comparability of IDS literature from the perspective of metrics
used in the empirical evaluation of the IDS. We identified 22 metrics commonly used in the empirical
evaluation of IDS and constructed search terms to retrieve papers that mention the metric. We manually
reviewed a sample of 495 papers and found 159 of them to be relevant. We then estimated the number
of relevant papers in the entire set of papers retrieved from IEEE. We found that, in the evaluation
of IDSs, multiple different metrics are used and the trade-off between metrics is rarely considered. In
a retrospective analysis of the IDS literature, we found the the evaluation criteria has been improving
over time, albeit marginally. The inconsistencies in the use of evaluation metrics may not enable direct
comparison of one IDS to another.

2016-09-29
Rui Shu, Peipei Wang, Sigmund A. Gorski III, Benjamin Andow, Adwait Nadkarni, Luke Deshotels, Jason Gionta, William Enck, Xiaohui Gu.  2016.  A Study of Security Isolation Techniques. ACM Computing Surveys (CSUR).

Security isolation is a foundation of computing systems that enables resilience to different forms of attacks. This article seeks to understand existing security isolation techniques by systematically classifying different approaches and analyzing their properties. We provide a hierarchical classification structure for grouping different security  isolation techniques.  At the top level, we consider two principal aspects: mechanism and policy. Each aspect is broken down into salient dimensions that describe key properties. We break the mechanism into two dimensions: enforcement location and isolation granularity, and break the policy aspect  down into three dimensions: policy generation, policy configurability, and policy lifetime. We apply our classification to a set of representative papers that cover a breadth of security isolation techniques and discuss trade-offs among different design choices and limitations of existing  approaches.

 

2016-09-16
Robert Zager, John Zager.  2016.  Why We Will Continue to Lose the Cyber War. Mad Scientist Conference 2016.

The United States is losing the cyberwar. We are losing the cyberwar because cyber defenses apply the wrong philosophy to the wrong operating environment. In order to be effective, future cyber defenses must be viewed in the context of an engagement between human adversaries.

2016-07-13
Christopher Hannon, Illinois Institute of Technology, Jiaqi Yan, Illinois Institute of Tecnology, Dong Jin, Illinois Institute of Technology.  2016.  DSSnet: A Smart Grid Modeling Platform Combining Electrical Power Distribution System Simulation and Software Defined Networking Emulation. ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

The successful operations of modern power grids are highly dependent on a reliable and ecient underlying communication network. Researchers and utilities have started to explore the opportunities and challenges of applying the emerging software-de ned networking (SDN) technology to enhance eciency and resilience of the Smart Grid. This trend calls for a simulation-based platform that provides sufcient exibility and controllability for evaluating network application designs, and facilitating the transitions from inhouse research ideas to real productions. In this paper, we present DSSnet, a hybrid testing platform that combines a power distribution system simulator with an SDN emulator to support high delity analysis of communication network applications and their impacts on the power systems. Our contributions lay in the design of a virtual time system with the tight controllability on the execution of the emulation system, i.e., pausing and resuming any speci ed container processes in the perception of their own virtual clocks, with little overhead scaling to 500 emulated hosts with an average of 70 ms overhead; and also lay in the ecient synchronization of the two sub-systems based on the virtual time. We evaluate the system performance of DSSnet, and also demonstrate the usability through a case study by evaluating a load shifting algorithm.

Ross Koppel, University of Pennsylvania, Jim Blythe, University of Southern California, Vijay Kothari, Dartmouth College, Sean Smith, Dartmouth College.  2016.  Beliefs about Cybersecurity Rules and Passwords: A Comparison of Two Survey Samples of Cybersecurity Professionals Versur Regular Users. 12th Symposium On Usable Privacy and Security.

In this paper we explore the differential perceptions of cybersecurity professionals and general users regarding access rules and passwords. We conducted a preliminary survey involving 28 participants: 15 cybersecurity professionals and 13 general users. We present our preliminary findings and explain how such survey data might be used to improve security in
practice. We focus on user fatigue with access rules and passwords.
 

Bruno Korbar, Dartmouth College, Jim Blythe, University of Southern California, Ross Koppel, University of Pennsylvania, Vijay Kothari, Dartmouth College, Sean Smith, Dartmouth College.  2016.  Validating an Agent-Based Model of Human Password Behavior. AAAI-16 Workshop on Artificial Intelligence for Cyber Security .

Effective reasoning about the impact of security policy decisions requires understanding how human users actually behave, rather than assuming desirable but incorrect behavior. Simulation could help with this reasoning, but it requires building computational models of the relevant human behavior and validating that these models match what humans actually do. In this paper we describe our progress on building agent-based models of human behavior with passwords, and we demonstrate how these models reproduce phenomena
shown in the empirical literature.
 

2016-06-29
Ignacio X. Dominguez, Jayant Dhawan, Robert St. Amant, David L. Roberts.  In Press.  Exploring the Effects of Different Text Stimuli on Typing Behavior. International Conference on Cognitive Modeling.

In this work we explore how different cognitive processes af- fected typing patterns through a computer game we call The Typing Game. By manipulating the players’ familiarity with the words in our game through their similarity to dictionary words, and by allowing some players to replay rounds, we found that typing speed improves with familiarity with words, and also with practice, but that these are independent of the number of mistakes that are made when typing. We also found that users who had the opportunity to replay rounds exhibited different typing patterns even before replaying the rounds. 

2016-06-20
Nirav Ajmeri, Jiaming Jiang, Rada Y. Chirkova, Jon Doyle, Munindar P. Singh.  2016.  Coco: Runtime Reasoning about Conflicting Commitments. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI). :1–7.

To interact effectively, agents must enter into commitments. What should an agent do when these commitments conflict? We describe Coco, an approach for reasoning about which specific commitments apply to specific parties in light of general types of commitments, specific circumstances, and dominance relations among specific commitments. Coco adapts answer-set programming to identify a maximalsetofnondominatedcommitments. It provides a modeling language and tool geared to support practical applications.

2016-04-12
Anduo Wang, University of Illinois at Urbana-Champaign, Xueyan Mei, University of Illinois at Urbana-Champaign, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, Brighten Godfrey, University of Illinois at Urbana-Champaign.  2016.  Ravel: A Database-Defined Network. ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR 2016).

SDN’s logically centralized control provides an insertion point for programming the network. While it is generally agreed that higherlevel abstractions are needed to make that programming easy, there is little consensus on what are the “right” abstractions. Indeed, as SDN moves beyond its initial specialized deployments to broader use cases, it is likely that network control applications will require diverse abstractions that evolve over time. To this end, we champion a perspective that SDN control fundamentally revolves around data representation. We discard any application-specific structure that might be outgrown by new demands. Instead, we adopt a plain data representation of the entire network — network topology, forwarding, and control applications — and seek a universal data language that allows application programmers to transform the primitive representation into any high-level representations presented to applications or network operators. Driven by this insight, we present a system, Ravel, that implements an entire SDN network control infrastructure within a standard SQL database. In Ravel, network abstractions take the form of user-defined SQL views expressed by SQL queries that can be added on the fly. A key challenge in realizing this approach is to orchestrate multiple simultaneous abstractions that collectively affect the same underlying data. To achieve this, Ravel enhances the database with novel data integration mechanisms that merge the multiple views into a coherent forwarding behavior. Moreover, Ravel is exposed to applications through the one simple, familiar and highly interoperable SQL interface. While this is an ambitious long-term goal, our prototype built on the PostgreSQL database exhibits promising performance even for large scale networks.

2016-04-11
Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu et al..  2015.  Back to the Future: Malware Detection with Temporally Consistent Labels. CoRR. abs/1510.07338

The malware detection arms race involves constant change: malware changes to evade detection and labels change as detection mechanisms react. Recognizing that malware changes over time, prior work has enforced temporally consistent samples by requiring that training binaries predate evaluation binaries. We present temporally consistent labels, requiring that training labels also predate evaluation binaries since training labels collected after evaluation binaries constitute label knowledge from the future. Using a dataset containing 1.1 million binaries from over 2.5 years, we show that enforcing temporal label consistency decreases detection from 91% to 72% at a 0.5% false positive rate compared to temporal samples alone.

The impact of temporal labeling demonstrates the potential of improved labels to increase detection results. Hence, we present a detector capable of selecting binaries for submission to an expert labeler for review. At a 0.5% false positive rate, our detector achieves a 72% true positive rate without an expert, which increases to 77% and 89% with 10 and 80 expert queries daily, respectively. Additionally, we detect 42% of malicious binaries initially undetected by all 32 antivirus vendors from VirusTotal used in our evaluation. For evaluation at scale, we simulate the human expert labeler and show that our approach is robust against expert labeling errors. Our novel contributions include a scalable malware detector integrating manual review with machine learning and the examination of temporal label consistency

2016-04-07
Aron Laszka, Jian Lou, Yevgeniy Vorobeychik.  2016.  Multi-Defender Strategic Filtering Against Spear-Phishing Attacks. 30th AAAI Conference on Artificial Intelligence (AAAI).

Spear-phishing attacks pose a serious threat to sensitive computer systems, since they sidestep technical security mechanisms by exploiting the carelessness of authorized users. A common way to mitigate such attacks is to use e-mail filters which block e-mails with a maliciousness score above a chosen threshold. Optimal choice of such a threshold involves a tradeoff between the risk from delivered malicious emails and the cost of blocking benign traffic. A further complicating factor is the strategic nature of an attacker, who may selectively target users offering the best value in terms of likelihood of success and resulting access privileges. Previous work on strategic threshold-selection considered a single organization choosing thresholds for all users. In reality, many organizations are potential targets of such attacks, and their incentives need not be well aligned. We therefore consider the problem of strategic threshold-selection by a collection of independent self-interested users. We characterize both Stackelberg multi-defender equilibria, corresponding to short-term strategic dynamics, as well as Nash equilibria of the simultaneous game between all users and the attacker, modeling long-term dynamics, and exhibit a polynomial-time algorithm for computing short-term (Stackelberg) equilibria. We find that while Stackelberg multi-defender equilibrium need not exist, Nash equilibrium always exists, and remarkably, both equilibria are unique and socially optimal.

2016-01-15
Waqar Ahmad, Joshua Sunshine, Christian Kästner, Adam Wynne.  2015.  Enforcing Fine-Grained Security and Privacy Policies in an Ecosystem within an Ecosystem. MobileDeLi 2015 .

Smart home automation and IoT promise to bring many advantages but they also expose their users to certain security and privacy vulnerabilities. For example, leaking the information about the absence of a person from home or the medicine somebody is taking may have serious security and privacy consequences for home users and potential legal implications for providers of home automation and IoT platforms. We envision that a new ecosystem within an existing smartphone ecosystem will be a suitable platform for distribution of apps for smart home and IoT devices. Android is increasingly becoming a popular platform for smart home and IoT devices and applications. Built-in security mechanisms in ecosystems such as Android have limitations that can be exploited by malicious apps to leak users’ sensitive data to unintended recipients. For instance, Android enforces that an app requires the Internet permissions in order to access a web server but it does not control which servers the app talks to or what data it shares with other apps. Therefore, sub-ecosystems that enforce additional fine-grained custom policies on top of existing policies of the smartphone ecosystems are necessary for smart home or IoT platforms. To this end, we have built a tool that enforces additional policies on inter-app interactions and permissions of Android apps. We have done preliminary testing of our tool on three proprietary apps developed by a future provider of a home automation platform. Our initial evaluation demonstrates that it is possible to develop mechanisms that allow definition and enforcement of custom security policies appropriate for ecosystems of the like smart home automation and IoT.

2015-12-02
Jun Moon, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2015.  Minimax Control Over Unreliable Communication Channels. Automatica. 59(1)

In this paper, we consider a minimax control problem for linear time-invariant (LTI) systems over unreliable communication channels. This can be viewed as an extension of the H optimal control problem, where the transmission from the plant output sensors to the controller, and from the controller to the plant are over sporadically failing channels. We consider two different scenarios for unreliable communication. The first one is where the communication channel provides perfect acknowledgments of successful transmissions of control packets through a clean reverse channel, that is the TCP (Transmission Control Protocol). Under this setting, we obtain a class of output feedback minimax controllers; we identify a set of explicit threshold-type existence conditions in terms of the H disturbance attenuation parameter and the packet loss rates that guarantee stability and performance of the closed-loop system. The second scenario is one where there is no acknowledgment of successful transmissions of control packets, that is the UDP (User Datagram Protocol). We consider a special case of this problem where there is no measurement noise in the transmission from the sensors. For this problem, we obtain a class of corresponding minimax controllers by characterizing a set of (different) existence conditions. We also discuss stability and performance of the closed-loop system. We provide simulations to illustrate the results in all cases.

Jun Moon, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2014.  Minimax Control of MIMO Systems Over Multiple TCP-like Lossy Networks. 19th IFAC World Congress (IFAC 2014).

This paper considers a minimax control problem over multiple packet dropping channels. The channel losses are assumed to be Bernoulli processes, and operate under the transmission control protocol (TCP); hence acknowledgments of control and measurement drops are available at each time. Under this setting, we obtain an output feedback minimax controller, which are implicitly dependent on rates of control and measurement losses. For the infinite-horizon case, we first characterize achievable Hdisturbance attenuation levels, and then show that the underlying condition is a function of packet loss rates. We also address the converse part by showing that the condition of the minimum attainable loss rates for closed-loop system stability is a function of H disturbance attenuation parameter. Hence, those conditions are coupled with each other. Finally, we show the limiting behavior of the minimax controller under the disturbance attenuation parameter.

Jun Moon, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2014.  Control Over Lossy Networks: A Dynamic Game Approach. American Control Conference (ACC 2014).

Abstract— This paper considers a minimax control (H∞) control) problem for linear time-invariant (LTI) systems where the communication loop is subject to a TCP-like packet drop network. The problem is formulated within the zero-sum dynamic game framework. The packet drop network is governed by two independent Bernoulli processes that model control and measurement packet losses. Under this constraint, we obtain a dynamic output feedback minimax controller. For the infinite-horizon case, we provide necessary and sufficient conditions in terms of the packet loss rates and the H disturbance attenuation parameter under which the minimax controller exists and is able to stabilize the closed-loop system in the mean-square sense. In particular, we show that unlike the corresponding LQG case, these conditions are coupled and therefore cannot be determined independently.

2015-11-18
Sonia Santiago, Universidad Politécnica de Valencia, Spain, Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign.  2014.  A Formal Definition of Protocol Indistinguishability and its Verification Using Maude-NPA. 10th International Workshop on Security and Trust Management (STM 2014).

Intuitively, two protocols P1 and P2 are indistinguishable if an attacker cannot tell the difference between interactions with P1 and with P2 . In this paper we: (i) propose an intuitive notion of indistinguishability in Maude-NPA; (ii) formalize such a notion in terms of state unreachability conditions on their synchronous product; (iii) prove theorems showing how —assuming the protocol’s algebraic theory has a finite variant (FV) decomposition – these conditions can be checked by the Maude-NPA tool; and (iv) illustrate our approach with concrete examples. This provides for the first time a framework for automatic analysis of indistinguishability modulo as wide a class of algebraic properties as FV, which includes many associative-commutative theories of interest to cryptographic protocol analysis.

Fan Yang, University of Illinois at Urbana-Champaign, Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Paliath Narendran, University at Albany-SUNY.  2014.  Theories for Homomorphic Encryption, Unification and the Finite Variant Property. 16th International Symposium on Principles and Practice of Declarative Programming (PPDP 2014).

Recent advances in the automated analysis of cryptographic protocols have aroused new interest in the practical application of unification modulo theories, especially theories that describe the algebraic properties of cryptosystems. However, this application requires unification algorithms that can be easily implemented and easily extended to combinations of different theories of interest. In practice this has meant that most tools use a version of a technique known as variant unification. This requires, among other things, that the theory be decomposable into a set of axioms B and a set of rewrite rules R such that R has the finite variant property with respect to B. Most theories that arise in cryptographic protocols have decompositions suitable for variant unification, but there is one major exception: the theory that describes encryption that is homomorphic over an Abelian group.

In this paper we address this problem by studying various approximations of homomorphic encryption over an Abelian group. We construct a hierarchy of increasingly richer theories, taking advantage of new results that allow us to automatically verify that their decompositions have the finite variant property. This new verification procedure also allows us to construct a rough metric of the complexity of a theory with respect to variant unification, or variant complexity. We specify different versions of protocols using the different theories, and analyze them in the Maude-NPA cryptographic protocol analysis tool to assess their behavior. This gives us greater understanding of how the theories behave in actual application, and suggests possible techniques for improving performance.

Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Sonia Santiago, Universidad Politécnica de Valencia, Spain.  2014.  A Rewriting-based Forward Semantics for Maude-NPA. Symposium and Bootcamp on the Science of Security (HotSoS 2014).

The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool for reasoning about the security of cryptographic protocols in which the cryptosystems satisfy different equational properties. It tries to find secrecy or authentication attacks by searching backwards from an insecure attack state pattern that may contain logical variables, in such a way that logical variables become properly instantiated in order to find an initial state. The execution mechanism for this logical reachability is narrowing modulo an equational theory. Although Maude-NPA also possesses a forwards semantics naturally derivable from the backwards semantics, it is not suitable for state space exploration or protocol simulation.

In this paper we define an executable forwards semantics for Maude-NPA, instead of its usual backwards one, and restrict it to the case of concrete states, that is, to terms without logical variables. This case corresponds to standard rewriting modulo an equational theory. We prove soundness and completeness of the backwards narrowing-based semantics with respect to the rewriting-based forwards semantics. We show its effectiveness as an analysis method that complements the backwards analysis with new prototyping, simulation, and explicit-state model checking features by providing some experimental results.

Serdar Erbatur, Università degli Studi di Verona, Santiago Escobar, Universidad Politécnica de Valencia, Spain, Deepak Kapur, University of New Mexico, Zhiqiang Liu, Clarkson University, Christopher A. Lynch, Clarkson University, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Paliath Narendran, University at Albany-SUNY, Sonia Santiago, Universidad Politécnica de Valencia, Spain, Ralf Sasse, Institute of Information Security, ETH.  2013.  Asymmetric Unification: A New Unification Paradigm for Cryptographic Protocol Analysis. 24th International Conference on Automated Deduction (CADE 2013) .

We present a new paradigm for unification arising out of a technique commonly used in cryptographic protocol analysis tools that employ unification modulo equational theories. This paradigm relies on: (i) a decomposition of an equational theory into (R, E) where R is confluent, terminating, and coherent modulo E, and (ii) on reducing unifi- cation problems to a set of problems s =? t under the constraint that t remains R/E-irreducible. We call this method asymmetric unification . We first present a general-purpose generic asymmetric unification algorithm.and then outline an approach for converting special-purpose conventional unification algorithms to asymmetric ones, demonstrating it for exclusive-or with uninterpreted function symbols. We demonstrate how asymmetric unification can improve performanceby running the algorithm on a set of benchmark problems. We also give results on the complexity and decidability of asymmetric unification.

 

 

Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Sonia Santiago, Universidad Politécnica de Valencia, Spain.  2010.  Sequential Protocol Composition in Maude-NPA. 15th European Conference on Research in Computer Security (ESORICS 2010).

Protocols do not work alone, but together, one protocol relying on another to provide needed services. Many of the problems in cryptographic protocols arise when such composition is done incorrectly or is not well understood. In this paper we discuss an extension to the Maude-NPA syntax and operational semantics to support dynamic sequential composition of protocols, so that protocols can be specified sepa- rately and composed when desired. This allows one to reason about many different compositions with minimal changes to the specification. Moreover, we show that, by a simple protocol transformation, we are able to analyze and verify this dynamic composition in the current Maude-NPA tool. We prove soundness and completeness of the protocol transforma- tion with respect to the extended operational semantics, and illustrate our results on some examples.

2015-11-17
Ray Essick, University of Illinois at Urbana-Champaign, Ji-Woong Lee, Pennsylvania State University, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Path-By-Path Output Regulation of Switched Systems With a Receding Horizon of Modal Knowledge. American Control Conference (ACC).

We address a discrete-time LQG control problem over a fixed performance window and apply a receding-horizon type control strategy, resulting in an exact solution to the problem in terms of semidefinite programming. The systems considered take parameters from a finite set, and switch between them according to an automaton. The controller has a finite preview of future parameters, beyond which only the set of parameters is known. We provide necessary and sufficient convex con- ditions for the existence of a controller which guarantees both exponential stability and finite-horizon performance levels for the system; the performance levels may differ according to the particular parameter sequence within the performance window. A simple, physics-based example is provided to illustrate the main results.

Ray Essick, University of Illinois at Urbana-Champaign, Ji-Woong Lee, Pennsylvania State University, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Control of Linear Switched Systems with Receding Horizon Modal Information. IEEE Transactions on Automatic Control. 59(9)

We provide an exact solution to two performance problems—one of disturbance attenuation and one of windowed variance minimization—subject to exponential stability. Considered are switched systems, whose parameters come from a finite set and switch according to a language such as that specified by an automaton. The controllers are path-dependent, having finite memory of past plant parameters and finite foreknowledge of future parameters. Exact, convex synthesis conditions for each performance problem are expressed in terms of nested linear matrix inequalities. The resulting semidefinite programming problem may be solved offline to arrive at a suitable controller. A notion of path-by-path performance is introduced for each performance problem, leading to improved system performance. Non-regular switching languages are considered and the results are extended to these languages. Two simple, physically motivated examples are given to demonstrate the application of these results.