Visible to the public Biblio

Found 675 results

Filters: First Letter Of Last Name is O  [Clear All Filters]
2020-10-16
Pandes, Tiffany Lyn O., Omorog, Challiz D., Medrano, Regino B..  2018.  LeMTrac: Legislative Management and Tracking System. :1—6.

{Information and Communications Technology (ICT) have rationalized government services into a more efficient and transparent government. However, a large part of the government services remained constant in the manual process due to the high cost of ICT. The purpose of this paper is to explore the role of e-governance and ICT in the legislative management of municipalities in the Philippines. This study adopted the phases of Princeton Project Management Methodology (PPMM) as the approach in the development of LeMTrac. This paper utilized the developmental- quantitative research design involving two (2) sets of respondents, which are the end-users and IT experts. Majority of the respondents perceived that the system as "highly acceptable" with an average Likert score of 4.72 for the ISO 9126 Software quality metric Usability. The findings also reveal that the integration of LeMTrac within the Sangguniang Bayan (SB) Office in the Municipal Local Government Units (LGU) of Nabua and Bula, Camarines Sur provided better accessibility, security, and management of documents.

Bayaga, Anass, Ophoff, Jacques.  2019.  Determinants of E-Government Use in Developing Countries: The Influence of Privacy and Security Concerns. 2019 Conference on Next Generation Computing Applications (NextComp). :1—7.

There has been growing concern about privacy and security risks towards electronic-government (e-government) services adoption. Though there are positive results of e- government, there are still other contestable challenges that hamper success of e-government services. While many of the challenges have received considerable attention, there is still little to no firm research on others such as privacy and security risks, effects of infrastructure both in urban and rural settings. Other concerns that have received little consideration are how for instance; e-government serves as a function of perceived usefulness, ease of use, perceived benefit, as well as cultural dimensions and demographic constructs in South Africa. Guided by technology acceptance model, privacy calculus, Hofstede cultural theory and institutional logic theory, the current research sought to examine determinants of e- government use in developing countries. Anchored upon the aforementioned theories and background, the current study proposed three recommendations as potential value chain, derived from e-government service in response to citizens (end- user) support, government and community of stakeholders.

Cho, Sang Hyun, Oh, Sae Yong, Rou, Ho Gun, Gim, Gwang Yong.  2019.  A Study on The Factors Affecting The Continuous Use of E-Government Services - Focused on Privacy and Security Concerns-. 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). :351—361.

In this study, we conducted a survey of those who have used E-Government Services (civil servants, employees of public institutions, and the public) to empirically identify the factors affecting the continuous use intention E-Government Services, and conducted an empirical analysis using SPSS and Smart PLS with 284 valid samples except for dual, error and poor answers. Based on the success model of the information system (IS access model), we set independent variables which were divided into quality factors (service quality, system quality, information quality) and risk factors (personal information and security), and perceived ease of use and reliability, which are the main variables based on the technology acceptance model (TAM) that best describes the parameter group, were established as useful parameters. In addition, we design the research model by setting user satisfaction and the continuous use intention as dependent variables, conducted the study about how affecting factors influence to the acceptance factors through 14 hypotheses.The study found that 12 from 14 hypotheses were adopted and 2 were rejected. Looking at the results derived, it was analyzed that, firstly, 3 quality factors all affect perceived ease of use in relation to the quality of service, system quality, information quality which are perceived ease of use of E-Government Services. Second, in relation to the quality of service quality, system quality, information quality and perceived usefulness which are the quality factors of E-Government Services, the quality of service and information quality affect perceived usefulness, but system quality does not affect perceived usefulness. Third, it was analyzed that both factors influence reliability in the relationship between Privacy and security and trust which are risk factors. Fourth, the relationship between perceived ease of use and perceived usefulness has shown that perceived ease of use does not affect perceived usefulness. Finally, the relationship between user value factors (perceptual usability, perceived usefulness and trust) and user satisfaction and the continuous use intention was analyzed that user value factors affect user satisfaction while user satisfaction affects the continuous use intention. This study can be meaningful in that it theoretically presented the factors influencing the continued acceptance of e-government services through precedent research, presented the variables and measurement items verified through the empirical analysis process, and verified the causal relationship between the variables. The e-government service can contribute to the implementation of e-government in line with the era of the 4th Industrial Revolution by using it as a reference to the establishment of policies to improve the quality of people's lives and provide convenient services to the people.

2020-10-14
Ou, Yifan, Deng, Bin, Liu, Xuan, Zhou, Ke.  2019.  Local Outlier Factor Based False Data Detection in Power Systems. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). :2003—2007.
The rapid developments of smart grids provide multiple benefits to the delivery of electric power, but at the same time makes the power grids under the threat of cyber attackers. The transmitted data could be deliberately modified without triggering the alarm of bad data detection procedure. In order to ensure the stable operation of the power systems, it is extremely significant to develop effective abnormal detection algorithms against injected false data. In this paper, we introduce the density-based LOF algorithm to detect the false data and dummy data. The simulation results show that the traditional density-clustering based LOF algorithm can effectively identify FDA, but the detection performance on DDA is not satisfactory. Therefore, we propose the improved LOF algorithm to detect DDA by setting reasonable density threshold.
2020-10-12
Okutan, Ahmet, Cheng, Fu-Yuan, Su, Shao-Hsuan, Yang, Shanchieh Jay.  2019.  Dynamic Generation of Empirical Cyberattack Models with Engineered Alert Features. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Due to the increased diversity and complexity of cyberattacks, innovative and effective analytics are needed in order to identify critical cyber incidents on a corporate network even if no ground truth data is available. This paper develops an automated system which processes a set of intrusion alerts to create behavior aggregates and then classifies these aggregates into empirical attack models through a dynamic Bayesian approach with innovative feature engineering methods. Each attack model represents a unique collective attack behavior that helps to identify critical activities on the network. Using 2017 National Collegiate Penetration Testing Competition data, it is demonstrated that the developed system is capable of generating and refining unique attack models that make sense to human, without a priori knowledge.
Jeong, Jongkil, Mihelcic, Joanne, Oliver, Gillian, Rudolph, Carsten.  2019.  Towards an Improved Understanding of Human Factors in Cybersecurity. 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). :338–345.
Cybersecurity cannot be addressed by technology alone; the most intractable aspects are in fact sociotechnical. As a result, the 'human factor' has been recognised as being the weakest and most obscure link in creating safe and secure digital environments. This study examines the subjective and often complex nature of human factors in the cybersecurity context through a systematic literature review of 27 articles which span across technical, behavior and social sciences perspectives. Results from our study suggest that there is still a predominately a technical focus, which excludes the consideration of human factors in cybersecurity. Our literature review suggests that this is due to a lack of consolidation of the attributes pertaining to human factors; the application of theoretical frameworks; and a lack of in-depth qualitative studies. To ensure that these gaps are addressed, we propose that future studies take into consideration (a) consolidating the human factors; (b) examining cyber security from an interdisciplinary approach; (c) conducting additional qualitative research whilst investigating human factors in cybersecurity.
Asadi, Nima, Rege, Aunshul, Obradovic, Zoran.  2018.  Analysis of Adversarial Movement Through Characteristics of Graph Topological Ordering. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
Capturing the patterns in adversarial movement can provide valuable information regarding how the adversaries progress through cyberattacks. This information can be further employed for making comparisons and interpretations of decision making of the adversaries. In this study, we propose a framework based on concepts of social networks to characterize and compare the patterns, variations and shifts in the movements made by an adversarial team during a real-time cybersecurity exercise. We also explore the possibility of movement association with the skill sets using topological sort networks. This research provides preliminary insight on adversarial movement complexity and linearity and decision-making as cyberattacks unfold.
2020-10-05
Ong, Desmond, Soh, Harold, Zaki, Jamil, Goodman, Noah.  2019.  Applying Probabilistic Programming to Affective Computing. IEEE Transactions on Affective Computing. :1—1.

Affective Computing is a rapidly growing field spurred by advancements in artificial intelligence, but often, held back by the inability to translate psychological theories of emotion into tractable computational models. To address this, we propose a probabilistic programming approach to affective computing, which models psychological-grounded theories as generative models of emotion, and implements them as stochastic, executable computer programs. We first review probabilistic approaches that integrate reasoning about emotions with reasoning about other latent mental states (e.g., beliefs, desires) in context. Recently-developed probabilistic programming languages offer several key desidarata over previous approaches, such as: (i) flexibility in representing emotions and emotional processes; (ii) modularity and compositionality; (iii) integration with deep learning libraries that facilitate efficient inference and learning from large, naturalistic data; and (iv) ease of adoption. Furthermore, using a probabilistic programming framework allows a standardized platform for theory-building and experimentation: Competing theories (e.g., of appraisal or other emotional processes) can be easily compared via modular substitution of code followed by model comparison. To jumpstart adoption, we illustrate our points with executable code that researchers can easily modify for their own models. We end with a discussion of applications and future directions of the probabilistic programming approach

2020-09-28
Butun, Ismail, Österberg, Patrik, Gidlund, Mikael.  2019.  Preserving Location Privacy in Cyber-Physical Systems. 2019 IEEE Conference on Communications and Network Security (CNS). :1–6.
The trending technological research platform is Internet of Things (IoT)and most probably it will stay that way for a while. One of the main application areas of IoT is Cyber-Physical Systems (CPSs), in which IoT devices can be leveraged as actuators and sensors in accordance with the system needs. The public acceptance and adoption of CPS services and applications will create a huge amount of privacy issues related to the processing, storage and disclosure of the user location information. As a remedy, our paper proposes a methodology to provide location privacy for the users of CPSs. Our proposal takes advantage of concepts such as mix-zone, context-awareness, and location-obfuscation. According to our best knowledge, the proposed methodology is the first privacy-preserving location service for CPSs that offers adaptable privacy levels related to the current context of the user.
Oya, Simon, Troncoso, Carmela, Pèrez-Gonzàlez, Fernando.  2019.  Rethinking Location Privacy for Unknown Mobility Behaviors. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :416–431.
Location Privacy-Preserving Mechanisms (LPPMs) in the literature largely consider that users' data available for training wholly characterizes their mobility patterns. Thus, they hardwire this information in their designs and evaluate their privacy properties with these same data. In this paper, we aim to understand the impact of this decision on the level of privacy these LPPMs may offer in real life when the users' mobility data may be different from the data used in the design phase. Our results show that, in many cases, training data does not capture users' behavior accurately and, thus, the level of privacy provided by the LPPM is often overestimated. To address this gap between theory and practice, we propose to use blank-slate models for LPPM design. Contrary to the hardwired approach, that assumes known users' behavior, blank-slate models learn the users' behavior from the queries to the service provider. We leverage this blank-slate approach to develop a new family of LPPMs, that we call Profile Estimation-Based LPPMs. Using real data, we empirically show that our proposal outperforms optimal state-of-the-art mechanisms designed on sporadic hardwired models. On non-sporadic location privacy scenarios, our method is only better if the usage of the location privacy service is not continuous. It is our hope that eliminating the need to bootstrap the mechanisms with training data and ensuring that the mechanisms are lightweight and easy to compute help fostering the integration of location privacy protections in deployed systems.
Mitani, Tatsuo, OTSUKA, Akira.  2019.  Traceability in Permissioned Blockchain. 2019 IEEE International Conference on Blockchain (Blockchain). :286–293.
In this paper, we propose the traceability of assets in a permissioned blockchain connected with a permissionless blockchain. We make traceability of assets in the permissioned blockchain be defined and be expressed as a hidden Markov model. There exists no dishonest increase and decrease of assets in this model. The condition is called balance. As we encrypt this model with fully homomorphic encryption and apply the zero knowledge proof of plaintext knowledge, we show that the trace-ability and balance of the permissioned blockchain are able to be proved in zero knowledge to the permissionless blockchain with concealing the asset allocation of the permissioned blockchain.
2020-09-21
Osman, Amr, Bruckner, Pascal, Salah, Hani, Fitzek, Frank H. P., Strufe, Thorsten, Fischer, Mathias.  2019.  Sandnet: Towards High Quality of Deception in Container-Based Microservice Architectures. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.
Responding to network security incidents requires interference with ongoing attacks to restore the security of services running on production systems. This approach prevents damage, but drastically impedes the collection of threat intelligence and the analysis of vulnerabilities, exploits, and attack strategies. We propose the live confinement of suspicious microservices into a sandbox network that allows to monitor and analyze ongoing attacks under quarantine and that retains an image of the vulnerable and open production network. A successful sandboxing requires that it happens completely transparent to and cannot be detected by an attacker. Therefore, we introduce a novel metric to measure the Quality of Deception (QoD) and use it to evaluate three proposed network deception mechanisms. Our evaluation results indicate that in our evaluation scenario in best case, an optimal QoD is achieved. In worst case, only a small downtime of approx. 3s per microservice (MS) occurs and thus a momentary drop in QoD to 70.26% before it converges back to optimum as the quarantined services are restored.
2020-09-14
Ortiz Garcés, Ivan, Cazares, Maria Fernada, Andrade, Roberto Omar.  2019.  Detection of Phishing Attacks with Machine Learning Techniques in Cognitive Security Architecture. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :366–370.
The number of phishing attacks has increased in Latin America, exceeding the operational skills of cybersecurity analysts. The cognitive security application proposes the use of bigdata, machine learning, and data analytics to improve response times in attack detection. This paper presents an investigation about the analysis of anomalous behavior related with phishing web attacks and how machine learning techniques can be an option to face the problem. This analysis is made with the use of an contaminated data sets, and python tools for developing machine learning for detect phishing attacks through of the analysis of URLs to determinate if are good or bad URLs in base of specific characteristics of the URLs, with the goal of provide realtime information for take proactive decisions that minimize the impact of an attack.
Anselmi, Nicola, Poli, Lorenzo, Oliveri, Giacomo, Rocca, Paolo, Massa, Andrea.  2019.  Dealing with Correlation and Sparsity for an Effective Exploitation of the Compressive Processing in Electromagnetic Inverse Problems. 2019 13th European Conference on Antennas and Propagation (EuCAP). :1–4.
In this paper, a novel method for tomographic microwave imaging based on the Compressive Processing (CP) paradigm is proposed. The retrieval of the dielectric profiles of the scatterers is carried out by efficiently solving both the sampling and the sensing problems suitably formulated under the first order Born approximation. Selected numerical results are presented in order to show the improvements provided by the CP with respect to conventional compressive sensing (CSE) approaches.
2020-09-04
Li, Ge, Iyer, Vishnuvardhan, Orshansky, Michael.  2019.  Securing AES against Localized EM Attacks through Spatial Randomization of Dataflow. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :191—197.
A localized electromagnetic (EM) attack is a potent threat to security of embedded cryptographic implementations. The attack utilizes high resolution EM probes to localize and exploit information leakage in sub-circuits of a system, providing information not available in traditional EM and power attacks. In this paper, we propose a countermeasure based on randomizing the assignment of sensitive data to parallel datapath components in a high-performance implementation of AES. In contrast to a conventional design where each state register byte is routed to a fixed S-box, a permutation network, controlled by a transient random value, creates a dynamic random mapping between the state registers and the set of S-boxes. This randomization results in a significant reduction of exploitable leakage.We demonstrate the countermeasure's effectiveness under two attack scenarios: a more powerful attack that assumes a fully controlled access to an attacked implementation for building a priori EM-profiles, and a generic attack based on the black-box model. Spatial randomization leads to a 150× increase of the minimum traces to disclosure (MTD) for the profiled attack and a 3.25× increase of MTD for the black-box model attack.
Kanemura, Kota, Toyoda, Kentaroh, Ohtsuki, Tomoaki.  2019.  Identification of Darknet Markets’ Bitcoin Addresses by Voting Per-address Classification Results. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :154—158.
Bitcoin is a decentralized digital currency whose transactions are recorded in a common ledger, so called blockchain. Due to the anonymity and lack of law enforcement, Bitcoin has been misused in darknet markets which deal with illegal products, such as drugs and weapons. Therefore from the security forensics aspect, it is demanded to establish an approach to identify newly emerged darknet markets' transactions and addresses. In this paper, we thoroughly analyze Bitcoin transactions and addresses related to darknet markets and propose a novel identification method of darknet markets' addresses. To improve the identification performance, we propose a voting based method which decides the labels of multiple addresses controlled by the same user based on the number of the majority label. Through the computer simulation with more than 200K Bitcoin addresses, it was shown that our voting based method outperforms the nonvoting based one in terms of precision, recal, and F1 score. We also found that DNM's addresses pay higher fees than others, which significantly improves the classification.
Osia, Seyed Ali, Rassouli, Borzoo, Haddadi, Hamed, Rabiee, Hamid R., Gündüz, Deniz.  2019.  Privacy Against Brute-Force Inference Attacks. 2019 IEEE International Symposium on Information Theory (ISIT). :637—641.
Privacy-preserving data release is about disclosing information about useful data while retaining the privacy of sensitive data. Assuming that the sensitive data is threatened by a brute-force adversary, we define Guessing Leakage as a measure of privacy, based on the concept of guessing. After investigating the properties of this measure, we derive the optimal utility-privacy trade-off via a linear program with any f-information adopted as the utility measure, and show that the optimal utility is a concave and piece-wise linear function of the privacy-leakage budget.
2020-08-28
Ferreira, P.M.F.M., Orvalho, J.M., Boavida, F..  2005.  Large Scale Mobile and Pervasive Augmented Reality Games. EUROCON 2005 - The International Conference on "Computer as a Tool". 2:1775—1778.
Ubiquitous or pervasive computing is a new kind of computing, where specialized elements of hardware and software will have such high level of deployment that their use will be fully integrated with the environment. Augmented reality extends reality with virtual elements but tries to place the computer in a relatively unobtrusive, assistive role. To our knowledge, there is no specialized network middleware solution for large-scale mobile and pervasive augmented reality games. We present a work that focus on the creation of such network middleware for mobile and pervasive entertainment, applied to the area of large scale augmented reality games. In, this context, mechanisms are being studied, proposed and evaluated to deal with issues such as scalability, multimedia data heterogeneity, data distribution and replication, consistency, security, geospatial location and orientation, mobility, quality of service, management of networks and services, discovery, ad-hoc networking and dynamic configuration
Ferreira, Pedro, Orvalho, Joao, Boavida, Fernando.  2007.  Security and privacy in a middleware for large scale mobile and pervasive augmented reality. 2007 15th International Conference on Software, Telecommunications and Computer Networks. :1—5.
Ubiquitous or pervasive computing is a new kind of computing, where specialized elements of hardware and software will have such high level of deployment that their use will be fully integrated with the environment. Augmented reality extends reality with virtual elements but tries to place the computer in a relatively unobtrusive, assistive role. In this paper we propose, test and analyse a security and privacy architecture for a previously proposed middleware architecture for mobile and pervasive large scale augmented reality games, which is the main contribution of this paper. The results show that the security features proposed in the scope of this work do not affect the overall performance of the system.
McFadden, Danny, Lennon, Ruth, O’Raw, John.  2019.  AIS Transmission Data Quality: Identification of Attack Vectors. 2019 International Symposium ELMAR. :187—190.

Due to safety concerns and legislation implemented by various governments, the maritime sector adopted Automatic Identification System (AIS). Whilst governments and state agencies have an increasing reliance on AIS data, the underlying technology can be found to be fundamentally insecure. This study identifies and describes a number of potential attack vectors and suggests conceptual countermeasures to mitigate such attacks. With interception by Navy and Coast Guard as well as marine navigation and obstacle avoidance, the vulnerabilities within AIS call into question the multiple deployed overlapping AIS networks, and what the future holds for the protocol.

2020-08-17
O'Donoghue, Jeremy.  2019.  Towards lightweight and interoperable trust models: The entity attestation token. Living in the Internet of Things (IoT 2019). :1–11.
It is generally difficult for a relying party to obtain trustworthy evidence about the characteristics of the remote systems with which they interact, and such systems as exist today tend to be proprietary and/or expensive to deploy. Large-scale IoT deployments will require mechanisms enabling the state of system components to be reliably determined to enable management systems to efficiently identify certain classes of overall system vulnerability. Such attestation mechanisms will need to support heterogeneous systems comprising equipment from many vendors, often with differing cost and security profiles. The Entity Attestation Token (EAT) [1] is an extensible and crypto-agile container for transporting claims about a device state in a verifiable manner. In its simplest form, the Entity Attestation Token can be implemented at very low cost in pure hardware, but it can scale to meet the requirements of complex systems. The Entity Attestation Token is built on the IETF COSE (CBOR Object Signing and Encryption) standard. COSE provides a lightweight, flexible and crypto-agile container for a collection of standardized claims definitions — these are being defined in number of bodies including the IETF and GlobalPlatform. Of particular practical note is the strong support for Entity Attestation Token from a number of very significant vendors in the semiconductor industry. This paper outlines the technical foundations of the Entity Attestation Token as a mechanism for reliably transporting claims within an attestation framework, discusses some of the interoperability challenges and considers areas where further work may be required.
2020-08-13
Zola, Francesco, Eguimendia, Maria, Bruse, Jan Lukas, Orduna Urrutia, Raul.  2019.  Cascading Machine Learning to Attack Bitcoin Anonymity. 2019 IEEE International Conference on Blockchain (Blockchain). :10—17.

Bitcoin is a decentralized, pseudonymous cryptocurrency that is one of the most used digital assets to date. Its unregulated nature and inherent anonymity of users have led to a dramatic increase in its use for illicit activities. This calls for the development of novel methods capable of characterizing different entities in the Bitcoin network. In this paper, a method to attack Bitcoin anonymity is presented, leveraging a novel cascading machine learning approach that requires only a few features directly extracted from Bitcoin blockchain data. Cascading, used to enrich entities information with data from previous classifications, led to considerably improved multi-class classification performance with excellent values of Precision close to 1.0 for each considered class. Final models were implemented and compared using different machine learning models and showed significantly higher accuracy compared to their baseline implementation. Our approach can contribute to the development of effective tools for Bitcoin entity characterization, which may assist in uncovering illegal activities.

2020-08-10
Luo, Yuling, Ouyang, Xue, Liu, Junxiu, Cao, Lvchen.  2019.  An Image Encryption Method Based on Elliptic Curve Elgamal Encryption and Chaotic Systems. IEEE Access. 7:38507–38522.
Due to the potential security problem about key management and distribution for the symmetric image encryption schemes, a novel asymmetric image encryption method is proposed in this paper, which is based on the elliptic curve ElGamal (EC-ElGamal) cryptography and chaotic theory. Specifically, the SHA-512 hash is first adopted to generate the initial values of a chaotic system, and a crossover permutation in terms of chaotic index sequence is used to scramble the plain-image. Furthermore, the generated scrambled image is embedded into the elliptic curve for the encrypted by EC-ElGamal which can not only improve the security but also can help solve the key management problems. Finally, the diffusion combined chaos game with DNA sequence is executed to get the cipher image. The experimental analysis and performance comparisons demonstrate that the proposed method has high security, good efficiency, and strong robustness against the chosen-plaintext attack which make it have potential applications for the image secure communications.
Onaolapo, A.K., Akindeji, K.T..  2019.  Application of Artificial Neural Network for Fault Recognition and Classification in Distribution Network. 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :299–304.
Occurrence of faults in power systems is unavoidable but their timely recognition and location enhances the reliability and security of supply; thereby resulting in economic gain to consumers and power utility alike. Distribution Network (DN) is made smarter by the introduction of sensors and computers into the system. In this paper, detection and classification of faults in DN using Artificial Neural Network (ANN) is emphasized. This is achieved through the employment of Back Propagation Algorithm (BPA) of the Feed Forward Neural Network (FFNN) using three phase voltages and currents as inputs. The simulations were carried out using the MATLAB® 2017a. ANN with various hidden layers were analyzed and the results authenticate the effectiveness of the method.
Rodinko, Mariia, Oliynykov, Roman.  2019.  Comparing Performances of Cypress Block Cipher and Modern Lighweight Block Ciphers on Different Platforms. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :113–116.

The paper is devoted to the comparison of performance of prospective lightweight block cipher Cypress with performances of the known modern lightweight block ciphers such as AES, SPECK, SPARX etc. The measurement was done on different platforms: Windows, Linux and Android. On all platforms selected, the block cipher Cypress showed the best results. The block cipher Cypress-256 showed the highest performance on Windows x32 (almost 3.5 Gbps), 64-bit Linux (over 8 Gbps) and Android (1.3 Gbps). On Windows x64 the best result was obtained by Cypress- 512 (almost 5 Gbps).