Visible to the public Biblio

Filters: Author is Okutan, Ahmet  [Clear All Filters]
2023-07-20
Khokhlov, Igor, Okutan, Ahmet, Bryla, Ryan, Simmons, Steven, Mirakhorli, Mehdi.  2022.  Automated Extraction of Software Names from Vulnerability Reports using LSTM and Expert System. 2022 IEEE 29th Annual Software Technology Conference (STC). :125—134.
Software vulnerabilities are closely monitored by the security community to timely address the security and privacy issues in software systems. Before a vulnerability is published by vulnerability management systems, it needs to be characterized to highlight its unique attributes, including affected software products and versions, to help security professionals prioritize their patches. Associating product names and versions with disclosed vulnerabilities may require a labor-intensive process that may delay their publication and fix, and thereby give attackers more time to exploit them. This work proposes a machine learning method to extract software product names and versions from unstructured CVE descriptions automatically. It uses Word2Vec and Char2Vec models to create context-aware features from CVE descriptions and uses these features to train a Named Entity Recognition (NER) model using bidirectional Long short-term memory (LSTM) networks. Based on the attributes of the product names and versions in previously published CVE descriptions, we created a set of Expert System (ES) rules to refine the predictions of the NER model and improve the performance of the developed method. Experiment results on real-life CVE examples indicate that using the trained NER model and the set of ES rules, software names and versions in unstructured CVE descriptions could be identified with F-Measure values above 0.95.
2020-10-12
Okutan, Ahmet, Cheng, Fu-Yuan, Su, Shao-Hsuan, Yang, Shanchieh Jay.  2019.  Dynamic Generation of Empirical Cyberattack Models with Engineered Alert Features. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Due to the increased diversity and complexity of cyberattacks, innovative and effective analytics are needed in order to identify critical cyber incidents on a corporate network even if no ground truth data is available. This paper develops an automated system which processes a set of intrusion alerts to create behavior aggregates and then classifies these aggregates into empirical attack models through a dynamic Bayesian approach with innovative feature engineering methods. Each attack model represents a unique collective attack behavior that helps to identify critical activities on the network. Using 2017 National Collegiate Penetration Testing Competition data, it is demonstrated that the developed system is capable of generating and refining unique attack models that make sense to human, without a priori knowledge.
2019-11-12
Werner, Gordon, Okutan, Ahmet, Yang, Shanchieh, McConky, Katie.  2018.  Forecasting Cyberattacks as Time Series with Different Aggregation Granularity. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-7.

Cyber defense can no longer be limited to intrusion detection methods. These systems require malicious activity to enter an internal network before an attack can be detected. Having advanced, predictive knowledge of future attacks allow a potential victim to heighten security and possibly prevent any malicious traffic from breaching the network. This paper investigates the use of Auto-Regressive Integrated Moving Average (ARIMA) models and Bayesian Networks (BN) to predict future cyber attack occurrences and intensities against two target entities. In addition to incident count forecasting, categorical and binary occurrence metrics are proposed to better represent volume forecasts to a victim. Different measurement periods are used in time series construction to better model the temporal patterns unique to each attack type and target configuration, seeing over 86% improvement over baseline forecasts. Using ground truth aggregated over different measurement periods as signals, a BN is trained and tested for each attack type and the obtained results provided further evidence to support the findings from ARIMA. This work highlights the complexity of cyber attack occurrences; each subset has unique characteristics and is influenced by a number of potential external factors.