Biblio
We report on our research on proving the security of multi-party cryptographic protocols using the EASYCRYPT proof assistant. We work in the computational model using the sequence of games approach, and define honest-butcurious (semi-honest) security using a variation of the real/ideal paradigm in which, for each protocol party, an adversary chooses protocol inputs in an attempt to distinguish the party's real and ideal games. Our proofs are information-theoretic, instead of being based on complexity theory and computational assumptions. We employ oracles (e.g., random oracles for hashing) whose encapsulated states depend on dynamically-made, nonprogrammable random choices. By limiting an adversary's oracle use, one may obtain concrete upper bounds on the distances between a party's real and ideal games that are expressed in terms of game parameters. Furthermore, our proofs work for adaptive adversaries, ones that, when choosing the value of a protocol input, may condition this choice on their current protocol view and oracle knowledge. We provide an analysis in EASYCRYPT of a three party private count retrieval protocol. We emphasize the lessons learned from completing this proof.
Users' QoE (Quality of Experience) in Multi-sensorial, Immersive, Collaborative Environments (MICE) applications is mostly measured by psychometric studies. These studies provide a subjective insight into the performance of such applications. In this paper, we hypothesize that spatial coherence or the lack of it of the embedded virtual objects among users has a correlation to the QoE in MICE. We use Position Discrepancy (PD) to model this lack of spatial coherence in MICE. Based on that, we propose a Hierarchical Position Discrepancy Model (HPDM) that computes PD at multiple levels to derive the application/system-level PD as a measure of performance.; AB@Experimental results on an example task in MICE show that HPDM can objectively quantify the application performance and has a correlation to the psychometric study-based QoE measurements. We envisage HPDM can provide more insight on the MICE application without the need for extensive user study.
With Software Defined Networking (SDN) the control plane logic of forwarding devices, switches and routers, is extracted and moved to an entity called SDN controller, which acts as a broker between the network applications and physical network infrastructure. Failures of the SDN controller inhibit the network ability to respond to new application requests and react to events coming from the physical network. Despite of the huge impact that a controller has on the network performance as a whole, a comprehensive study on its failure dynamics is still missing in the state of the art literature. The goal of this paper is to analyse, model and evaluate the impact that different controller failure modes have on its availability. A model in the formalism of Stochastic Activity Networks (SAN) is proposed and applied to a case study of a hypothetical controller based on commercial controller implementations. In case study we show how the proposed model can be used to estimate the controller steady state availability, quantify the impact of different failure modes on controller outages, as well as the effects of software ageing, and impact of software reliability growth on the transient behaviour.
The world is becoming an immense critical information infrastructure, with the fast and increasing entanglement of utilities, telecommunications, Internet, cloud, and the emerging IoT tissue. This may create enormous opportunities, but also brings about similarly extreme security and dependability risks. We predict an increase in very sophisticated targeted attacks, or advanced persistent threats (APT), and claim that this calls for expanding the frontier of security and dependability methods and techniques used in our current CII. Extreme threats require extreme defenses: we propose resilience as a unifying paradigm to endow systems with the capability of dynamically and automatically handling extreme adversary power, and sustaining perpetual and unattended operation. In this position paper, we present this vision and describe our methodology, as well as the assurance arguments we make for the ultra-resilient components and protocols they enable, illustrated with case studies in progress.
This paper introduces an ensemble model that solves the binary classification problem by incorporating the basic Logistic Regression with the two recent advanced paradigms: extreme gradient boosted decision trees (xgboost) and deep learning. To obtain the best result when integrating sub-models, we introduce a solution to split and select sets of features for the sub-model training. In addition to the ensemble model, we propose a flexible robust and highly scalable new scheme for building a composite classifier that tries to simultaneously implement multiple layers of model decomposition and outputs aggregation to maximally reduce both bias and variance (spread) components of classification errors. We demonstrate the power of our ensemble model to solve the problem of predicting the outcome of Hearthstone, a turn-based computer game, based on game state information. Excellent predictive performance of our model has been acknowledged by the second place scored in the final ranking among 188 competing teams.
Two emerging architectural paradigms, i.e., Software Defined Networking (SDN) and Network Function Virtualization (NFV), enable the deployment and management of Service Function Chains (SFCs). A SFC is an ordered sequence of abstract Service Functions (SFs), e.g., firewalls, VPN-gateways, traffic monitors, that packets have to traverse in the route from source to destination. While this appealing solution offers significant advantages in terms of flexibility, it also introduces new challenges such as the correct configuration and ordering of SFs in the chain to satisfy overall security requirements. This paper presents a formal model conceived to enable the verification of correct policy enforcements in SFCs. Software tools based on the model can then be designed to cope with unwanted network behaviors (e.g., security flaws) deriving from incorrect interactions of SFs of the same SFC.
Smart IoT applications require connecting multiple IoT devices and networks with multiple services running in fog and cloud computing platforms. One approach to connecting IoT devices with cloud and fog services is to create a federated virtual network. The main benefit of this approach is that IoT devices can then interact with multiple remote services using an application specific federated network where no traffic from other applications passes. This federated network spans multiple cloud platforms and IoT networks but it can be managed as a single entity. From the point of view of security, federated virtual networks can be managed centrally and be secured with a coherent global network security policy. This does not mean that the same security policy applies everywhere, but that the different security policies are specified in a single coherent security policy. In this paper we propose to extend a federated cloud networking security architecture so that it can secure IoT devices and networks. The federated network is extended to the edge of IoT networks by integrating a federation agent in an IoT gateway or network controller (Can bus, 6LowPan, Lora, ...). This allows communication between the federated cloud network and the IoT network. The security architecture is based on the concepts of network function virtualisation (NFV) and service function chaining (SFC) for composing security services. The IoT network and devices can then be protected by security virtual network functions (VNF) running at the edge of the IoT network.
In multi-proxy multi-signature schemes, an original group of signers can authorize another group of proxy signers under the agreement of all singers both in the original group and proxy group. The paper proposes a new multi-proxy multi-signature based on elliptic curve cryptography. This new scheme is secure against the insider attack that is a powerful attack on the multi-signature schemes.
Federated cloud networks are formed by federating virtual network segments from different clouds, e.g. in a hybrid cloud, into a single federated network. Such networks should be protected with a global federated cloud network security policy. The availability of network function virtualisation and service function chaining in cloud platforms offers an opportunity for implementing and enforcing global federated cloud network security policies. In this paper we describe an approach for enforcing global security policies in federated cloud networks. The approach relies on a service manifest that specifies the global network security policy. From this manifest configurations of the security functions for the different clouds of the federation are generated. This enables automated deployment and configuration of network security functions across the different clouds. The approach is illustrated with a case study where communications between trusted and untrusted clouds, e.g. public clouds, are encrypted. The paper discusses future work on implementing this architecture for the OpenStack cloud platform with the service function chaining API.
Cyber-physical system integrity requires both hardware and software security. Many of the cyber attacks are successful as they are designed to selectively target a specific hardware or software component in an embedded system and trigger its failure. Existing security measures also use attack vector models and isolate the malicious component as a counter-measure. Isolated security primitives do not provide the overall trust required in an embedded system. Trust enhancements are proposed to a hardware security platform, where the trust specifications are implemented in both software and hardware. This distribution of trust makes it difficult for a hardware-only or software-only attack to cripple the system. The proposed approach is applied to a smart grid application consisting of third-party soft IP cores, where an attack on this module can result in a blackout. System integrity is preserved in the event of an attack and the anomalous behavior of the IP core is recorded by a supervisory module. The IP core also provides a snapshot of its trust metric, which is logged for further diagnostics.
Utility computing is being gradually realized as exemplified by cloud computing. Outsourcing computing and storage to global-scale cloud providers benefits from high accessibility, flexibility, scalability, and cost-effectiveness. However, users are uneasy outsourcing the storage of sensitive data due to security concerns. We address this problem by presenting SeMiNAS–-an efficient middleware system that allows files to be securely outsourced to providers and shared among geo-distributed offices. SeMiNAS achieves end-to-end data integrity and confidentiality with a highly efficient authenticated-encryption scheme. SeMiNAS leverages advanced NFSv4 features, including compound procedures and data-integrity extensions, to minimize extra network round trips caused by security meta-data. SeMiNAS also caches remote files locally to reduce accesses to providers over WANs. We designed, implemented, and evaluated SeMiNAS, which demonstrates a small performance penalty of less than 26% and an occasional performance boost of up to 19% for Filebench workloads.
Cybercrimes today are focused over returns, especially in the form of monetary returns. In this paper - through a literature study and conducting interviews for the people victimized by ransomware and a survey with random set of victimized and non-victimized by ransomware - conclusions about the dependence of ransomware on demographics like age and education areshown. Increasing threats due to ease of transfer of ransomware through internet arealso discussed. Finally, low level awarenessamong company professionals is confirmed and reluctance to payment on being a victim is found as a common trait.
We present the Chained Attacks approach, an automated model-based approach to test the security of web applications that does not require a background in formal methods. Starting from a set of HTTP conversations and a configuration file providing the testing surface and purpose, a model of the System Under Test (SUT) is generated and input, along with the web attacker model we defined, to a model checker acting as test oracle. The HTTP conversations, payload libraries, and a mapping created while generating the model aid the concretization of the test cases, allowing for their execution on the SUT's implementation. We applied our approach to a real-life case study and we were able to find a combination of different attacks representing the concrete chained attack performed by a bug bounty hunter.
The threat of inserting malicious logic in hardware design is increasing as the digital supply chains are becoming more deep and span the whole globe. Ring oscillators (ROs) can be used to detect deviations of circuit operations due to changes of its layout caused by the insertion of a hardware Trojan horse (Trojan). The placement and the length of the ring oscillator are two important parameters that define an RO sensitivity and capability to detect malicious alternations. We propose and study the use of ring oscillators with variable lengths, configurable at the runtime. Such oscillators push further the envelope for the attackers, as their design must be undetectable by all supported lengths. We study the efficiency of our proposal on defending against a family of hardware Trojans against an implementation of the AES cryptographic algorithm on an FPGA.
We present a demonstration of the ARIA framework, a modular approach for rapid development of virtual humans for information retrieval that have linguistic, emotional, and social skills and a strong personality. We demonstrate the framework's capabilities in a scenario where `Alice in Wonderland', a popular English literature book, is embodied by a virtual human representing Alice. The user can engage in an information exchange dialogue, where Alice acts as the expert on the book, and the user as an interested novice. Besides speech recognition, sophisticated audio-visual behaviour analysis is used to inform the core agent dialogue module about the user's state and intentions, so that it can go beyond simple chat-bot dialogue. The behaviour generation module features a unique new capability of being able to deal gracefully with interruptions of the agent.
Congestion Control (CC) algorithms are essential to quickly restore the network performance back to stable whenever congestion occurs. A majority of the existing CC algorithms are implemented at the transport layer, mostly coupled with TCP. Over the past three decades, CC algorithms have incrementally evolved, resulting in many extensions of TCP. A thorough evaluation of a new TCP extension is a huge task. Hence, the Internet Congestion Control Research Group (ICCRG) has proposed a common TCP evaluation suite that helps researchers to gain an initial insight into the working of their proposed TCP extension. This paper presents an implementation of the TCP evaluation suite in ns-3, that automates the simulation setup, topology creation, traffic generation, execution, and results collection. We also describe the internals of our implementation and demonstrate its usage for evaluating the performance of five TCP extensions available in ns-3, by automatically setting up the following simulation scenarios: (i) single and multiple bottleneck topologies, (ii) varying bottleneck bandwidth, (iii) varying bottleneck RTT and (iv) varying the number of long flows.