Visible to the public Biblio

Found 1032 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2017-07-18
Christopher Novak, Dartmouth College, Jim Blythe, University of Southern Califonia, Ross Koppel, University of Southern California, Vijay Kothari, Dartmouth College, Sean Smith, Dartmouth College.  2017.  Modeling Aggregate Security with User Agents that Employ Password Memorization Techniques. Symposium On Usable Privacy and Security (SOUPS 2017).

We discuss our ongoing work with an agent-based password simulation which models how site-enforced password requirements a ect aggregate security when people interact with multiple authentication systems. We model two password memorization techniques: passphrase generation and spaced repetition. Our simulation suggests system-generated passphrases lead to lower aggregate security across services that enforce even moderate password requirements. Furthermore, allowing users to expand their password length over time via spaced repetition increases aggregate security.

Ross Koppel, University of Southern California, Jim Blythe, University of Southern Califonia, Vijay Kothari, Dartmouth College, Sean Smith, Dartmouth College.  2017.  Password Logbooks and What Their Amazon Reviews Reveal About the Users’ Motivations, Beliefs, and Behaviors. 2nd European Workshop on Useable Security (EuroUSEC 2017).

The existence of and market for notebooks designedfor users to write down passwords illuminates a sharp contrast: what is often prescribed as proper password behavior—e.g., never write down passwords—differs from what many users actually do. These password logbooks and their reviews provide many unique and surprising insights into their users’ beliefs, motivations, and behaviors. We examine the password logbooks and analyze, using grounded theory, their reviews, to better understand how these users think and behave with respectto password authentication. Several themes emerge including: previous password management strategies, gifting, organizational strategies, password sharing, and dubious security advice. Some users argue these books enhance security.

2017-06-27
Qiu, Shuo, Wang, Boyang, Li, Ming, Victors, Jesse, Liu, Jiqiang, Shi, Yanfeng, Wang, Wei.  2016.  Fast, Private and Verifiable: Server-aided Approximate Similarity Computation over Large-Scale Datasets. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :29–36.

Computing similarity, especially Jaccard Similarity, between two datasets is a fundamental building block in big data analytics, and extensive applications including genome matching, plagiarism detection, social networking, etc. The increasing user privacy concerns over the release of has sensitive data have made it desirable and necessary for two users to evaluate Jaccard Similarity over their datasets in a privacy-preserving manner. In this paper, we propose two efficient and secure protocols to compute the Jaccard Similarity of two users' private sets with the help of an unfully-trusted server. Specifically, in order to boost the efficiency, we leverage Minhashing algorithm on encrypted data, where the output of our protocols is guaranteed to be a close approximation of the exact value. In both protocols, only an approximate similarity result is leaked to the server and users. The first protocol is secure against a semi-honest server, while the second protocol, with a novel consistency-check mechanism, further achieves result verifiability against a malicious server who cheats in the executions. Experimental results show that our first protocol computes an approximate Jaccard Similarity of two billion-element sets within only 6 minutes (under 256-bit security in parallel mode). To the best of our knowledge, our consistency-check mechanism represents the very first work to realize an efficient verification particularly on approximate similarity computation.

Venkatesan, Sridhar, Albanese, Massimiliano, Cybenko, George, Jajodia, Sushil.  2016.  A Moving Target Defense Approach to Disrupting Stealthy Botnets. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :37–46.

Botnets are increasingly being used for exfiltrating sensitive data from mission-critical systems. Research has shown that botnets have become extremely sophisticated and can operate in stealth mode by minimizing their host and network footprint. In order to defeat exfiltration by modern botnets, we propose a moving target defense approach for dynamically deploying detectors across a network. Specifically, we propose several strategies based on centrality measures to periodically change the placement of detectors. Our objective is to increase the attacker's effort and likelihood of detection by creating uncertainty about the location of detectors and forcing botmasters to perform additional actions in an attempt to create detector-free paths through the network. We present metrics to evaluate the proposed strategies and an algorithm to compute a lower bound on the detection probability. We validate our approach through simulations, and results confirm that the proposed solution effectively reduces the likelihood of successful exfiltration campaigns.

Bonada, Santiago, Veras, Rafael, Collins, Christopher.  2016.  Personalized Views for Immersive Analytics. Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces. :83–89.

In this paper we present work-in-progress toward a vision of personalized views of visual analytics interfaces in the context of collaborative analytics in immersive spaces. In particular, we are interested in the sense of immersion, responsiveness, and personalization afforded by gaze-based input. Through combining large screen visual analytics tools with eye-tracking, a collaborative visual analytics system can become egocentric while not disrupting the collaborative nature of the experience. We present a prototype system and several ideas for real-time personalization of views in visual analytics.

Sheng Liu, Michael K. Reiter, Vyas Sekar.  2017.  Flow reconnaissance via timing attacks on SDN switches. 37th IEEE International Conference on Distributed Computing Systems.

When encountering a packet flow for which it has no covering rule, a software-defined networking (SDN) switch requests an appropriate rule from its controller; this request delays the routing of the flow until the controller responds. We show that this delay gives rise to a timing side channel in which an attacker can test for the recent occurrence of a target flow by judiciously probing the switch with forged flows and using the delays they suffer to discern whether covering rules were previously installed in the switch. We develop a Markov model of an SDN switch to permit the attacker to select the best probe (or probes) to infer whether a target flow has recently occurred. Our model captures complexities related to rule evictions to make room for other rules; rule timeouts due to inactivity; the presence of multiple rules that apply to overlapping sets of flows; and rule priorities. We show that our model permits detection of target flows with considerable accuracy in many cases.

2017-06-05
Karmakar, Kallol Krishna, Varadharajan, Vijay, Tupakula, Udaya, Hitchens, Michael.  2016.  Policy Based Security Architecture for Software Defined Networks. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :658–663.

Software Defined Network(SDN) is a promising technological advancement in the networking world. It is still evolving and security is a major concern for SDN. In this paper we proposed policy based security architecture for securing the SDN domains. Our architecture enables the administrator to enforce different types of policies such as based on the devices, users, location and path for securing the communication in SDN domain. Our architecture is developed as an application that can be run on any of the SDN Controllers. We have implemented our architecture using the POX Controller and Raspberry Pi 2 switches. We will present different case scenarios to demonstrate fine granular security policy enforcement with our architecture.

Deo, Amit, Dash, Santanu Kumar, Suarez-Tangil, Guillermo, Vovk, Volodya, Cavallaro, Lorenzo.  2016.  Prescience: Probabilistic Guidance on the Retraining Conundrum for Malware Detection. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :71–82.

Malware evolves perpetually and relies on increasingly so- phisticated attacks to supersede defense strategies. Data-driven approaches to malware detection run the risk of becoming rapidly antiquated. Keeping pace with malware requires models that are periodically enriched with fresh knowledge, commonly known as retraining. In this work, we propose the use of Venn-Abers predictors for assessing the quality of binary classification tasks as a first step towards identifying antiquated models. One of the key benefits behind the use of Venn-Abers predictors is that they are automatically well calibrated and offer probabilistic guidance on the identification of nonstationary populations of malware. Our framework is agnostic to the underlying classification algorithm and can then be used for building better retraining strategies in the presence of concept drift. Results obtained over a timeline-based evaluation with about 90K samples show that our framework can identify when models tend to become obsolete.

2017-05-30
Alhuzali, Abeer, Eshete, Birhanu, Gjomemo, Rigel, Venkatakrishnan, V.N..  2016.  Chainsaw: Chained Automated Workflow-based Exploit Generation. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :641–652.

We tackle the problem of automated exploit generation for web applications. In this regard, we present an approach that significantly improves the state-of-art in web injection vulnerability identification and exploit generation. Our approach for exploit generation tackles various challenges associated with typical web application characteristics: their multi-module nature, interposed user input, and multi-tier architectures using a database backend. Our approach develops precise models of application workflows, database schemas, and native functions to achieve high quality exploit generation. We implemented our approach in a tool called Chainsaw. Chainsaw was used to analyze 9 open source applications and generated over 199 first- and second-order injection exploits combined, significantly outperforming several related approaches.

Abi-Antoun, Marwan, Khalaj, Ebrahim, Vanciu, Radu, Moghimi, Ahmad.  2016.  Abstract Runtime Structure for Reasoning About Security: Poster. Proceedings of the Symposium and Bootcamp on the Science of Security. :1–3.

We propose an interactive approach where analysts reason about the security of a system using an abstraction of its runtime structure, as opposed to looking at the code. They interactively refine a hierarchical object graph, set security properties on abstract objects or edges, query the graph, and investigate the results by studying highlighted objects or edges or tracing to the code. Behind the scenes, an inference analysis and an extraction analysis maintain the soundness of the graph with respect to the code.

Haller, Istvan, Jeon, Yuseok, Peng, Hui, Payer, Mathias, Giuffrida, Cristiano, Bos, Herbert, van der Kouwe, Erik.  2016.  TypeSan: Practical Type Confusion Detection. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :517–528.

The low-level C++ programming language is ubiquitously used for its modularity and performance. Typecasting is a fundamental concept in C++ (and object-oriented programming in general) to convert a pointer from one object type into another. However, downcasting (converting a base class pointer to a derived class pointer) has critical security implications due to potentially different object memory layouts. Due to missing type safety in C++, a downcasted pointer can violate a programmer's intended pointer semantics, allowing an attacker to corrupt the underlying memory in a type-unsafe fashion. This vulnerability class is receiving increasing attention and is known as type confusion (or bad-casting). Several existing approaches detect different forms of type confusion, but these solutions are severely limited due to both high run-time performance overhead and low detection coverage. This paper presents TypeSan, a practical type-confusion detector which provides both low run-time overhead and high detection coverage. Despite improving the coverage of state-of-the-art techniques, TypeSan significantly reduces the type-confusion detection overhead compared to other solutions. TypeSan relies on an efficient per-object metadata storage service based on a compact memory shadowing scheme. Our scheme treats all the memory objects (i.e., globals, stack, heap) uniformly to eliminate extra checks on the fast path and relies on a variable compression ratio to minimize run-time performance and memory overhead. Our experimental results confirm that TypeSan is practical, even when explicitly checking almost all the relevant typecasts in a given C++ program. Compared to the state of the art, TypeSan yields orders of magnitude higher coverage at 4–10 times lower performance overhead on SPEC and 2 times on Firefox. As a result, our solution offers superior protection and is suitable for deployment in production software. Moreover, our highly efficient metadata storage back-end is potentially useful for other defenses that require memory object tracking.

Gomes, Francisco A.A., Viana, Windson, Rocha, Lincoln S., Trinta, Fernando.  2016.  A Contextual Data Offloading Service With Privacy Support. Proceedings of the 22Nd Brazilian Symposium on Multimedia and the Web. :23–30.

Mobile devices, such as smarthphones, became a common tool in our daily routine. Mobile Applications (a.k.a. apps) are demanding access to contextual information increasingly. For instance, apps require user's environment data as well as their profiles in order to adapt themselves (interfaces, services, content) according to this context data. Mobile apps with this behavior are known as context-aware applications (CAS). Several software infrastructures have been created to help the development of CAS. However, most of them do not store the contextual data, once mobile devices are resource constrained. They are not built taking into account the privacy of contextual data either, due the fact that apps may expose contextual data, without user consent. This paper addresses these topics by extending an existing middleware platform that help the development of mobile context-aware applications. Our extension aims at store and process the contextual data generated from several mobile devices, using the computational power of the cloud, and the definition of privacy policies, which avoid dissemination of unauthorized contextual data.

Asmussen, Nils, Völp, Marcus, Nöthen, Benedikt, Härtig, Hermann, Fettweis, Gerhard.  2016.  M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :189–203.

In the last decade, the number of available cores increased and heterogeneity grew. In this work, we ask the question whether the design of the current operating systems (OSes) is still appropriate if these trends continue and lead to abundantly available but heterogeneous cores, or whether it forces a fundamental rethinking of how systems are designed. We argue that: 1. hiding heterogeneity behind a common hardware interface unifies, to a large extent, the control and coordination of cores and accelerators in the OS, 2. isolating at the network-on-chip rather than with processor features (like privileged mode, memory management unit, ...), allows running untrusted code on arbitrary cores, and 3. providing OS services via protocols over the network-on-chip, instead of via system calls, makes them accessible to arbitrary types of cores as well. In summary, this turns accelerators into first-class citizens and enables a single and convenient programming environment for all cores without the need to trust any application. In this paper, we introduce network-on-chip-level isolation, present the design of our microkernel-based OS, M3, and the common hardware interface, and evaluate the performance of our prototype in comparison to Linux. A bit surprising, without using accelerators, M3 outperforms Linux in some application-level benchmarks by more than a factor of five.

Ikram, Muhammad, Vallina-Rodriguez, Narseo, Seneviratne, Suranga, Kaafar, Mohamed Ali, Paxson, Vern.  2016.  An Analysis of the Privacy and Security Risks of Android VPN Permission-enabled Apps. Proceedings of the 2016 Internet Measurement Conference. :349–364.

Millions of users worldwide resort to mobile VPN clients to either circumvent censorship or to access geo-blocked content, and more generally for privacy and security purposes. In practice, however, users have little if any guarantees about the corresponding security and privacy settings, and perhaps no practical knowledge about the entities accessing their mobile traffic. In this paper we provide a first comprehensive analysis of 283 Android apps that use the Android VPN permission, which we extracted from a corpus of more than 1.4 million apps on the Google Play store. We perform a number of passive and active measurements designed to investigate a wide range of security and privacy features and to study the behavior of each VPN-based app. Our analysis includes investigation of possible malware presence, third-party library embedding, and traffic manipulation, as well as gauging user perception of the security and privacy of such apps. Our experiments reveal several instances of VPN apps that expose users to serious privacy and security vulnerabilities, such as use of insecure VPN tunneling protocols, as well as IPv6 and DNS traffic leakage. We also report on a number of apps actively performing TLS interception. Of particular concern are instances of apps that inject JavaScript programs for tracking, advertising, and for redirecting e-commerce traffic to external partners.

Vaughn, Jr., Rayford B., Morris, Tommy.  2016.  Addressing Critical Industrial Control System Cyber Security Concerns via High Fidelity Simulation. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :12:1–12:4.

This paper outlines a set of 10 cyber security concerns associated with Industrial Control Systems (ICS). The concerns address software and hardware development, implementation, and maintenance practices, supply chain assurance, the need for cyber forensics in ICS, a lack of awareness and training, and finally, a need for test beds which can be used to address the first 9 cited concerns. The concerns documented in this paper were developed based on the authors' combined experience conducting research in this field for the US Department of Homeland Security, the National Science Foundation, and the Department of Defense. The second half of this paper documents a virtual test bed platform which is offered as a tool to address the concerns listed in the first half of the paper. The paper discusses various types of test beds proposed in literature for ICS research, provides an overview of the virtual test bed platform developed by the authors, and lists future works required to extend the existing test beds to serve as a development platform.

2017-05-22
Lima, Antonio, Rocha, Francisco, Völp, Marcus, Esteves-Verissimo, Paulo.  2016.  Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :59–70.

Semi-autonomous driver assists are already widely deployed and fully autonomous cars are progressively leaving the realm of laboratories. This evolution coexists with a progressive connectivity and cooperation, creating important safety and security challenges, the latter ranging from casual hackers to highly-skilled attackers, requiring a holistic analysis, under the perspective of fully-fledged ecosystems of autonomous and cooperative vehicles. This position paper attempts at contributing to a better understanding of the global threat plane and the specific threat vectors designers should be attentive to. We survey paradigms and mechanisms that may be used to overcome or at least mitigate the potential risks that may arise through the several threat vectors analyzed.

Sheff, Isaac, Magrino, Tom, Liu, Jed, Myers, Andrew C., van Renesse, Robbert.  2016.  Safe Serializable Secure Scheduling: Transactions and the Trade-Off Between Security and Consistency. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :229–241.

Modern applications often operate on data in multiple administrative domains. In this federated setting, participants may not fully trust each other. These distributed applications use transactions as a core mechanism for ensuring reliability and consistency with persistent data. However, the coordination mechanisms needed for transactions can both leak confidential information and allow unauthorized influence. By implementing a simple attack, we show these side channels can be exploited. However, our focus is on preventing such attacks. We explore secure scheduling of atomic, serializable transactions in a federated setting. While we prove that no protocol can guarantee security and liveness in all settings, we establish conditions for sets of transactions that can safely complete under secure scheduling. Based on these conditions, we introduce \textbackslashti\staged commit\, a secure scheduling protocol for federated transactions. This protocol avoids insecure information channels by dividing transactions into distinct stages. We implement a compiler that statically checks code to ensure it meets our conditions, and a system that schedules these transactions using the staged commit protocol. Experiments on this implementation demonstrate that realistic federated transactions can be scheduled securely, atomically, and efficiently.

O'Neill, Maire, O'Sullivan, Elizabeth, McWilliams, Gavin, Saarinen, Markku-Juhani, Moore, Ciara, Khalid, Ayesha, Howe, James, del Pino, Rafael, Abdalla, Michel, Regazzoni, Francesco et al..  2016.  Secure Architectures of Future Emerging Cryptography SAFEcrypto. Proceedings of the ACM International Conference on Computing Frontiers. :315–322.

Funded under the European Union's Horizon 2020 research and innovation programme, SAFEcrypto will provide a new generation of practical, robust and physically secure post-quantum cryptographic solutions that ensure long-term security for future ICT systems, services and applications. The project will focus on the remarkably versatile field of Lattice-based cryptography as the source of computational hardness, and will deliver optimised public key security primitives for digital signatures and authentication, as well identity based encryption (IBE) and attribute based encryption (ABE). This will involve algorithmic and design optimisations, and implementations of lattice-based cryptographic schemes addressing cost, energy consumption, performance and physical robustness. As the National Institute of Standards and Technology (NIST) prepares for the transition to a post-quantum cryptographic suite B, urging organisations that build systems and infrastructures that require long-term security to consider this transition in architectural designs; the SAFEcrypto project will provide Proof-of-concept demonstrators of schemes for three practical real-world case studies with long-term security requirements, in the application areas of satellite communications, network security and cloud. The goal is to affirm Lattice-based cryptography as an effective replacement for traditional number-theoretic public-key cryptography, by demonstrating that it can address the needs of resource-constrained embedded applications, such as mobile and battery-operated devices, and of real-time high performance applications for cloud and network management infrastructures.

Wright, Mason, Venkatesan, Sridhar, Albanese, Massimiliano, Wellman, Michael P..  2016.  Moving Target Defense Against DDoS Attacks: An Empirical Game-Theoretic Analysis. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :93–104.

Distributed denial-of-service attacks are an increasing problem facing web applications, for which many defense techniques have been proposed, including several moving-target strategies. These strategies typically work by relocating targeted services over time, increasing uncertainty for the attacker, while trying not to disrupt legitimate users or incur excessive costs. Prior work has not shown, however, whether and how a rational defender would choose a moving-target method against an adaptive attacker, and under what conditions. We formulate a denial-of-service scenario as a two-player game, and solve a restricted-strategy version of the game using the methods of empirical game-theoretic analysis. Using agent-based simulation, we evaluate the performance of strategies from prior literature under a variety of attacks and environmental conditions. We find evidence for the strategic stability of various proposed strategies, such as proactive server movement, delayed attack timing, and suspected insider blocking, along with guidelines for when each is likely to be most effective.

Jamrozik, Konrad, von Styp-Rekowsky, Philipp, Zeller, Andreas.  2016.  Mining Sandboxes. Proceedings of the 38th International Conference on Software Engineering. :37–48.

We present sandbox mining, a technique to confine an application to resources accessed during automatic testing. Sandbox mining first explores software behavior by means of automatic test generation, and extracts the set of resources accessed during these tests. This set is then used as a sandbox, blocking access to resources not used during testing. The mined sandbox thus protects against behavior changes such as the activation of latent malware, infections, targeted attacks, or malicious updates. The use of test generation makes sandbox mining a fully automatic process that can be run by vendors and end users alike. Our BOXMATE prototype requires less than one hour to extract a sandbox from an Android app, with few to no confirmations required for frequently used functionality.

Sinha, Rohit, Costa, Manuel, Lal, Akash, Lopes, Nuno P., Rajamani, Sriram, Seshia, Sanjit A., Vaswani, Kapil.  2016.  A Design and Verification Methodology for Secure Isolated Regions. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. :665–681.

Hardware support for isolated execution (such as Intel SGX) enables development of applications that keep their code and data confidential even while running in a hostile or compromised host. However, automatically verifying that such applications satisfy confidentiality remains challenging. We present a methodology for designing such applications in a way that enables certifying their confidentiality. Our methodology consists of forcing the application to communicate with the external world through a narrow interface, compiling it with runtime checks that aid verification, and linking it with a small runtime that implements the narrow interface. The runtime includes services such as secure communication channels and memory management. We formalize this restriction on the application as Information Release Confinement (IRC), and we show that it allows us to decompose the task of proving confidentiality into (a) one-time, human-assisted functional verification of the runtime to ensure that it does not leak secrets, (b) automatic verification of the application's machine code to ensure that it satisfies IRC and does not directly read or corrupt the runtime's internal state. We present /CONFIDENTIAL: a verifier for IRC that is modular, automatic, and keeps our compiler out of the trusted computing base. Our evaluation suggests that the methodology scales to real-world applications.

2017-05-19
Nahshon, Yoav, Peterfreund, Liat, Vansummeren, Stijn.  2016.  Incorporating Information Extraction in the Relational Database Model. Proceedings of the 19th International Workshop on Web and Databases. :6:1–6:7.

Modern information extraction pipelines are typically constructed by (1) loading textual data from a database into a special-purpose application, (2) applying a myriad of text-analytics functions to the text, which produce a structured relational table, and (3) storing this table in a database. Obviously, this approach can lead to laborious development processes, complex and tangled programs, and inefficient control flows. Towards solving these deficiencies, we embark on an effort to lay the foundations of a new generation of text-centric database management systems. Concretely, we extend the relational model by incorporating into it the theory of document spanners which provides the means and methods for the model to engage the Information Extraction (IE) tasks. This extended model, called Spannerlog, provides a novel declarative method for defining and manipulating textual data, which makes possible the automation of the typical work method described above. In addition to formally defining Spannerlog and illustrating its usefulness for IE tasks, we also report on initial results concerning its expressive power.

Francis, Leena Mary, Visalatchi, K. C., Sreenath, N..  2016.  End to End Text Recognition from Natural Scene. Proceedings of the International Conference on Informatics and Analytics. :44:1–44:5.

The web world is been flooded with multi-media sources such as images, videos, animations and audios, which has in turn made the computer vision researchers to focus over extracting the content from the sources. Scene text recognition basically involves two major steps namely Text Localization and Text Recognition. This paper provides end-to-end text recognition approach to extract the characters alone from the complex natural scene. Using Maximal Stable Extremal Region (MSER) the various objects are localized, using Canny Edge detection method edges are identified, further binary classification is done using Connected-Component method which segregates the text and nontext objects and finally the stroke analysis method is applied to analyse the style of the character, leading to the character recognization. The Experimental results were obtained by testing the approach over ICDAR2015 dataset, wherein text was able to be recognized from most of the scene images with good precision value.

2017-05-18
Chan, Ellick, Venkataraman, Shivaram, David, Francis, Chaugule, Amey, Campbell, Roy.  2010.  Forenscope: A Framework for Live Forensics. Proceedings of the 26th Annual Computer Security Applications Conference. :307–316.

Current post-mortem cyber-forensic techniques may cause significant disruption to the evidence gathering process by breaking active network connections and unmounting encrypted disks. Although newer live forensic analysis tools can preserve active state, they may taint evidence by leaving footprints in memory. To help address these concerns we present Forenscope, a framework that allows an investigator to examine the state of an active system without the effects of taint or forensic blurriness caused by analyzing a running system. We show how Forenscope can fit into accepted workflows to improve the evidence gathering process. Forenscope preserves the state of the running system and allows running processes, open files, encrypted filesystems and open network sockets to persist during the analysis process. Forenscope has been tested on live systems to show that it does not operationally disrupt critical processes and that it can perform an analysis in less than 15 seconds while using only 125 KB of memory. We show that Forenscope can detect stealth rootkits, neutralize threats and expedite the investigation process by finding evidence in memory.

Hosseinzadeh, Shohreh, Virtanen, Seppo, Díaz-Rodríguez, Natalia, Lilius, Johan.  2016.  A Semantic Security Framework and Context-aware Role-based Access Control Ontology for Smart Spaces. Proceedings of the International Workshop on Semantic Big Data. :8:1–8:6.

Smart Spaces are composed of heterogeneous sensors and devices that collect and share information. This information may contain personal information of the users. Thus, securing the data and preserving the privacy are of paramount importance. In this paper, we propose techniques for information security and privacy protection for Smart Spaces based on the Smart-M3 platform. We propose a) a security framework, and b) a context-aware role-based access control scheme. We model our access control scheme using ontological techniques and Web Ontology Language (OWL), and implement it via CLIPS rules. To evaluate the efficiency of our access control scheme, we measure the time it takes to check the access rights of the access requests. The results demonstrate that the highest response time is approximately 0.2 seconds in a set of 100000 triples. We conclude that the proposed access control scheme produces low overhead and is therefore, an efficient approach for Smart Spaces.