Visible to the public Biblio

Filters: Author is Baras, John S.  [Clear All Filters]
2020-06-19
Baras, John S., Liu, Xiangyang.  2019.  Trust is the Cure to Distributed Consensus with Adversaries. 2019 27th Mediterranean Conference on Control and Automation (MED). :195—202.

Distributed consensus is a prototypical distributed optimization and decision making problem in social, economic and engineering networked systems. In collaborative applications investigating the effects of adversaries is a critical problem. In this paper we investigate distributed consensus problems in the presence of adversaries. We combine key ideas from distributed consensus in computer science on one hand and in control systems on the other. The main idea is to detect Byzantine adversaries in a network of collaborating agents who have as goal reaching consensus, and exclude them from the consensus process and dynamics. We describe a novel trust-aware consensus algorithm that integrates the trust evaluation mechanism into the distributed consensus algorithm and propose various local decision rules based on local evidence. To further enhance the robustness of trust evaluation itself, we also introduce a trust propagation scheme in order to take into account evidences of other nodes in the network. The resulting algorithm is flexible and extensible, and can incorporate more complex designs of decision rules and trust models. To demonstrate the power of our trust-aware algorithm, we provide new theoretical security performance results in terms of miss detection and false alarm rates for regular and general trust graphs. We demonstrate through simulations that the new trust-aware consensus algorithm can effectively detect Byzantine adversaries and can exclude them from consensus iterations even in sparse networks with connectivity less than 2f+1, where f is the number of adversaries.

2017-10-13
Gao, Peixin, Miao, Hui, Baras, John S., Golbeck, Jennifer.  2016.  STAR: Semiring Trust Inference for Trust-Aware Social Recommenders. Proceedings of the 10th ACM Conference on Recommender Systems. :301–308.

Social recommendation takes advantage of the influence of social relationships in decision making and the ready availability of social data through social networking systems. Trust relationships in particular can be exploited in such systems for rating prediction and recommendation, which has been shown to have the potential for improving the quality of the recommender and alleviating the issue of data sparsity, cold start, and adversarial attacks. An appropriate trust inference mechanism is necessary in extending the knowledge base of trust opinions and tackling the issue of limited trust information due to connection sparsity of social networks. In this work, we offer a new solution to trust inference in social networks to provide a better knowledge base for trust-aware recommender systems. We propose using a semiring framework as a nonlinear way to combine trust evidences for inferring trust, where trust relationship is model as 2-D vector containing both trust and certainty information. The trust propagation and aggregation rules, as the building blocks of our trust inference scheme, are based upon the properties of trust relationships. In our approach, both trust and distrust (i.e., positive and negative trust) are considered, and opinion conflict resolution is supported. We evaluate the proposed approach on real-world datasets, and show that our trust inference framework has high accuracy, and is capable of handling trust relationship in large networks. The inferred trust relationships can enlarge the knowledge base for trust information and improve the quality of trust-aware recommendation.